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ABSTRACT

We present a model of Fourier Power Density Spectrum
(PDS) formation in accretion powered X-ray binary sys-
tems derived from the first principles of the diffusion the-
ory. Timing properties of X-ray emission are consid-
ered to be a result of diffusive propagation of the driv-
ing perturbations in a bounded medium. We prove that
the integrated power of the resulting PDS,Px is only a
small fraction of the integrated power of the driving os-
cillations, Pdr which is distributed over the disk. Fur-
thermore, we demonstrate that the powerPx is inversely
proportional to the characteristic frequency of the driv-
ing oscillationsνdr which is likely scaled with the fre-
quency of the local gravity waves in the disk (Keplerian
frequency). Keeping in mind thatνdr increases towards
soft states leads us to conclude that the powerPx de-
clines towards soft states. This dependencePx ∝ ν−1

dr ex-
plains the well-known observational phenomenon that the
power of the X-ray variability decreases when the source
evolves to softer states. The resulting PDS continuum is
a sum of two components, a low frequency (LF) compo-
nent which presumably originates in an extended accre-
tion disk and a high frequency (HF) component which
originates in the innermost part of the source [Compton
cloud (CC)]. The LF PDS component has a power-law
shape with index of1.0−1.5 at higher frequencies (“red”
noise) and a flat spectrum below a characteristic (break)
frequency (“white” noise). This white-red noise (WRN)
continuum spectrum holds information about the physical
parameters of the bounded extended medium, diffusion
time scale and the dependence law of viscosity vs radius.
This LF PDS associated with the extended disk domi-
nates in the soft states of the system, while the HF PDS
characteristic of innermost CC component is dominant in
the low/hard and intermediate states. These PDS LF and
HF components directly correspond to the energy spec-
trum components. Namely: LF WRN is related to ther-
mal emission from an accretion disk, and the HF WRN to
the power-law tail, which presents a fraction of the disk

emission Comptonized in the Compton cloud. Hence, a
change of PDS features correlates with a change of en-
ergy spectral features. Analyzing the data for a number
of sources we find that the PDS is well represented by a
sum of the WRN CC component and the WRN extended
disk component. We apply our model of the PDS to a
sample of RXTE and EXOSAT timing data from Cyg X-
1 and Cyg X-2 which describes adequately the spectral
transitions in these sources.

Key words: accretion, accretion disks—black hole
physics—stars:individual (Cyg X-1), individual (Cyg X-
2) : radiation mechanisms: nonthermal—physical data
and processes.

1. INTRODUCTION

In Astronomy, in general the basic question is: what
one can learn from the observations confronting a the-
ory derived from the first principles and the main laws
of Physics. Particularly, X-ray Astronomy studies the
spectral and timing properties of X-ray emission sources.
During the last three decades a bulk of observational ev-
idence emerged, showing that black hole X-ray binaries
evolves through a set of spectral states [see 7, and ref-
erences therein]. The basic properties of the X-ray en-
ergy spectra in a particular state are determined by a
distribution of photons between two major spectral con-
tinuum components, i.e. the thermal component which
comes from an accretion disk and the power law, pre-
sumably formed by the soft disk photons upscattered in a
hot plasma surrounding the disk [Compton cloud (CC)].
Specifically, in the low-hard state the energy spectrum
of a source is dominated by a power law part, while in
high-soft states the thermal disk component is dominant.
The Fourier Power Density Spectrum (PDS) also has a
specific shape in each state. In low-hard state the source
emission is highly variable (up to 40% root-mean-square
(rms) variability) and PDS has a broken power law shape



with a flat plateau below the break frequency. In a less
variable (less than 10 % rms) high-soft state PDS is a
power law with index of 1.0-1.5 extending up to an orbital
frequency of a binary system [1, hereafter GA07] with a
cut-off at the higher frequencies. Many efforts have been
made to build a consistent theory of PDS formation in ac-
creting sources (see references below). In this Paper we
present a model which is based on the exact analytical
solution of perturbation diffusion equation in a bounded
configuration (i.e. accretion disk or CC). The model ex-
plains the continuum shape of the observed PDS compo-
nents as well as additional effects such as high frequency
cut-off and rms-flux relationship [14].

King et al. [3] proposed an explicit physical model
for the disc variability, consistent with Lyubarskii’s gen-
eral scheme [4], for solving this problem. They sug-
gested that local dynamo processes can affect the evolu-
tion of the accretion disc by driving angular momentum
loss in the form of an outflow (wind or jet). K04 argued
that large-scale outflow can only occur when the small-
scale random processes in neighboring disk annuli give
rise by chance to a coherent large-scale magnetic field.
This occurs on much longer time-scales (than that of the
small-scale random processes), and causes a bright large-
amplitude flare as a wide range of disc radii evolves in
a coherent fashion. Most of the time, dynamo action in-
stead produces small-amplitude flickering.

Lyubarskii [4] considered small amplitude local fluctua-
tions in the accretion rate at each radius, caused by small
amplitude variations in the viscosity, and then considers
the effect of these fluctuations on the accretion rate at the
inner disc edge. A linear calculation shows that if the
characteristic time-scale of the viscosity variations is ev-
erywhere comparable to the viscous (inflow) time-scale,
and if the amplitude of the variations is independent of ra-
dius, then the power spectrum of luminosity fluctuations
is a power-law1/ν. If the amplitude of the variations
increases with radius, the slope of the power spectrum
of the luminosity variations is steeper than 1. Lyubarskii
pointed out that he had no physical model for the cause
of such fluctuations. In particular, although the obvious
candidate cause is the magnetic dynamo, the characteris-
tic time-scales for the dynamo are much shorter than the
local viscous time-scale.

In this Paper we present the exact treatment of the pertur-
bation diffusion with the generic assumption regarding
the disk viscosity, perturbation variability and its distri-
bution in the disk. We apply the results of our theoretical
investigations to the RXTE and EXOSAT observations of
Cyg X-1 and Cyg X-2.

Gilfanov & Arefiev [1] analyzed the PDSs for a number
of NS and BH sources using RXTE and EXOSAT obser-
vations in the wide frequency range, from10−8 Hz to102

Hz. Particularly, they found the composite PDS of Cyg
X-2. We reproduce their composite PDS. Furthermore,
we infer the physical characteristics of the accretion flow
in Cyg X-2 by application of our theory to the observable
PDS.

2. EVOLUTION OF THE POWER SPECTRA.
THEORETICAL CONSIDERATION

In this Paper we study the diffusive propagation of the
local dynamical perturbations (fluctuations) in the disk-
like bounded configuration. In other words, we assume
that there is a temporal source of fluctuation at any point
(radius) of the medium (disk)Φ(R, t). The X-ray time re-
sponse of the disk, the luminosity perturbation,∆Lx(t)
can be considered in terms of diffusive propagation of
the local driving perturbationsΦ(R, t) in the disk. We
assume that the temporal local variations of the mass
supply in the disk around the steady state are small.
They are only some fraction of the steady state mass
supply through the disk. In other words, the amplitude
of Φ(R, t) is proportional to the steady state mass ac-
cretion rate. Wood et al. [15], hereafter W01, show
(see Eq. 7 there) that the mass accretion rate at the in-
nermost radius of the disk̇M(Rin, t) is proportional to
the mass supply over the diskA(t). It implies that the
Ṁ(Rin, t) perturbations,∆Ṁ(Rin, t), should be propor-
tional to ∆A(t) = 2π

∫

Φ(R, t)RdR and consequently
proportional toA(t) because∆A(t) ∝ A.

Thus one can formulate the problem of the diffusive prop-
agation of the surface density perturbationsΦ(R, t) in the
bounded configuration (see Eq. 2 and Eq. 5 in W01). It is
important to emphasize that this diffusive propagation of
fluctuations (see Eq. 2) is an intrinsic property of a given
disk-like configuration (necessary condition) where the
angular momentum is distributed by diffusion.

The resulting power spectrum as a result of the diffusion
of perturbations in the disk||Fx(ω)||2 is a product of the
power spectrum of the temporal variation of source per-
turbations||Fϕ(ω)||2 and the power spectrum of the disk
response to the spatial distribution of the driving pertur-
bations over the disk||FY (ω)||2 (see Eq. 18). Because
the power of the driving perturbations||Fϕ(ω)||2 is di-
rectly related tothe mass supply over the diskA(t) (see
above) the intrinsic property of the diffusive propagation
of the driving perturbation isthe existence of a strong re-
lationship between the amplitude of the X-ray variability,
related to||Fx(ω)||2, and the X-ray flux∝ A(t) [compare
with the result of [14]].

If two disk-like bounded configurations are sources of
the perturbation, i.e.,∆Lx,1(t) and∆Lx,2(t) in the sys-
tem which are weakly correlated, then the resulting power
spectrum is a sum of the corresponding spectra (see Ap-
pendix A in [12], hereafter TSA07)

||Fx(ω)|| ≈ ||Fx,1(ω)||2 + ||Fx,2(ω)||2. (1)

2.1. Diffusive propagation of the perturbation in the
disk. Formulation of the problem

Here we consider the diffusive propagation when the
driving perturbations can be presented in a factorized



form Φ(t, R) = ϕ(t)f(R). In other words a spatial dis-
tribution of the driving perturbations in the disk is de-
scribed byf(R) andϕ(t) characterizes the perturbation
input rate at any disk radius. In TSA07, Appendix B.1
we show that the diffusion solution for the general case
of the functionΦ(t, R) can be well approximated by the
solution forΦ(t, R) = ϕ(t)f(R).

The diffusion equation for the time variable quantity
W (R, t), related to the surface density perturbations
∆Σ(R, t), W (R, t) = ∆Σ(R, t), can be written in an
operator form (see Eq. 5 in W01):

∂W

∂t
= ΛRW + ϕ(t)f(R) (2)

whereR is a radial coordinate in the disk andΛR is the
space diffusion operator. Equation (2) should be com-
bined with the appropriate boundary conditions atR = 0,
R = R0 and initial conditions att = 0. For homoge-
neous initial conditions, namely forW (R, 0) = 0 the
solution at anyR andt can be presented as a convolution

W (R, t) =

∫ t

0

ϕ(t′)X(R, t− t′)dt′. (3)

The kernel of convolution (3),X(R, t−t′) is a solution of
the initial value problem for the homogeneous equation

∂X

∂t
= ΛRX (4)

with the following initial conditions

X(R, t− t′)t=t′ = X(R, 0) = f(R) (5)

and with the same boundary conditions as that for
W (R, t) (we specify them in TSA07,§3, see also Eqs.
15, 16 in W01). The validity ofW (R, t), presented
by formula (3), as a solution of Eq. (2) with the ho-
mogeneous initial condition can be directly checked by
its substitution to Eq. (2) having in mind Eqs (4-5) for
X(R, t− t′).

It is important to point out that the resulting perturbation
signal is a sum of two components where one compo-
nent is presented by formula (3) and another component
is a solution of the initial value problem of a homoge-
neous diffusion equation, analogous to Eqs (4-5) but with
the initial perturbation function that can be different from
f(R) (see TSA07,§3).

If the observational time intervals are much longer than
the characteristic diffusion time scale of the perturbation
in the diskt0 then the contribution of the second compo-
nent of the resulting signal is exponentially small. The
amplitude of perturbations determined by the solution of
the homogeneous problem [see Eqs (4-5)] decays expo-
nentially fort� t0 (see details in TSA07,§3).

The power spectrum||FW (ω)||2 of W (R, t) can be pre-
sented as a product of the power spectra||Fϕ(ω)||2 and
||FX(ω)||2 of ϕ(t) andX(R, t) respectively:

||FW (ω,R)||2 = ||Fϕ(ω)||2||FX(ω,R)||2 (6)

whereFW (ω,R), Fϕ(ω), FX(ω,R) are Fourier trans-
forms ofW (R, t), ϕ(t), X(R, t) respectively.

The X-ray resulting variable signal is determined by the
fluctuations of the luminosity∆Lx(t). We assume that
the mass accretion rate variations∆Ṁ(0, t) is converted
with efficiencyεeff into the variations of the X-ray lumi-
nosity, i.e.∆Lx(t) = εeff∆Ṁ(0, t).

W01 show that for the functionW(x, t) = xν̂W (x2, t)
using a new variablex = R1/2 the diffusion equation (2)
can be presented in the form

∂W

∂t
=

3ν̂(x)

4x2

∂2W

∂x2
+ ϕ(t)F(x) (7)

whereν̂(x) is viscosity in the disk,F(x) = xν̂(x)f(x2).
The convolution, similar to Eq. (3), presents the solution
W(x, t)

W(x, t) =

∫ t

0

ϕ(t′)X (x, t− t′)dt′ (8)

whereX (x, t) is a solution of the initial value problem
(compare with Eqs. 4, 5)

∂X

∂t
=

3ν̂(x)

4x2

∂2X

∂x2
(9)

with the following initial conditions

X (x, 0) = F(x). (10)

W01 (see Eq. 10 there) find that

∆Lx(t) = εeff∆Ṁ(0, t) = 3πεeff
∂W

∂x
(0, t). (11)

The total X-ray deposition of the fluctuations at the inner
disk edgeQx can be obtained if we integrate Eq. (7) over
t (from 0 to ∞) and over x (from0 to x0 = R

1/2
0 ). Note

that the time integral in the left hand side of Eq. (7)

∫

∞

0

∂W

∂t
dt = W(x, t)|t=∞ −W(x, t)|t=0 = 0 (12)

because we are only interested in the solution for which
W(x,∞) = W(x, 0) = 0. Thus using the integration of
the right hand side of (7) combined with Eq. (11) and the
outer boundary condition∂W/∂x(x0, t) = 0 (see W01,
Eq. 15) and keeping in mind the relationx = r1/2 we
find that

Qx =

∫

∞

0

∆Lx(t)dt =

[

εeff

∫ R0

0

f(R)2πRdR

]

∫

∞

0

ϕ(t)dt = Cdr

∫

∞

0

ϕ(t)dt.

(13)
Since the functionf(R) determines the shape of the spa-
tial distribution of the driving perturbation only, we can



normalizef(R) in such a way that the factorCdr in the
right hand side of Eq. (13) is equal to 1, namely

Cdr = εeff

∫ R0

0

f(R)2πRdR = 1. (14)

In this case the total X-ray fluctuation energyQx is equal
to the integrated input (flux) of the driving perturbations
over the disk:

Qx =

∫

∞

0

ϕ(t)dt = Qdr. (15)

Eq. (15) implies that the emergent variable flux of X-ray
emissionQx is the same as the integrated input of the
driving perturbations over the diskQdr. In other words
the driving perturbation flux is conserved when the per-
turbations diffuse through the disk towards the inner disk
edge.

On the other handthe integrated power of the result-
ing PDSPx is only a small fraction of the integrated
power of the driving oscillations,Pdr, distributed over
the disk. The ratioPx/Pdr strongly depends on the diffu-
sion timescale in the diskt0 and on the characteristic fre-
quency of the driving oscillationsνdr [νdr = ωdr/(2π)].

In fact, the resulting X-ray signal due to the diffusion of
the driving perturbations is

∆Lx(t) =

∫ t

0

ϕ(t′)Y (t− t′)dt′, (16)

Y (t) = 3πεeff
∂X (0, t− t′)

∂x
. (17)

To obtain Eqs. (16) and (17) we use Eqs. (8) and (11).

Then the resulting power spectrum is

||Fx(ω)||2 = ||Fϕ(ω)||2||FY (ω)||2 (18)

whereFx(ω), Fϕ(ω), FY (ω) are Fourier transforms of
∆Lx(t), ϕ(t), Y (t) respectively [see e.g. TSA07, Eq.
(7) for definition of the Fourier transform].

The disk local driving oscillations convolved with the re-
sponse of the disk-like configuration results in the emer-
gent response of the system∆Lx(t). Ultimately, the
power spectrum||Fx(ω||2 of ∆Lx(t) carries the infor-
mation on the characteristic frequencies and the hydro-
dynamical structure of the system.

In general, the disk driving fluctuationϕ(t) can be pre-
sented as damped quasi-periodic oscillations for which
power spectrum is Lorentzian

||Fϕ(ω)||2 ∝ [(ω − ωdr)
2 + (Γdr/2)2]−1 (19)

where Γdr is a damping factor. We suggest that the
frequency of the disk driving oscillationsωdr (as a fre-
quency of the Raylegh-Taylor gravity waves) is scaled
with the local Keplerian frequencyωK. In fact, ωdr is
some mean value of the rotational frequency of the local

quasiperiodic oscillations in the disk-like configuration
(see TSA07, Appendix B.1).

Now we proceed with an estimate of the integrated to-
tal power of the resulting signalPx =

∫

∞

0 ||Fx(ω)||2dω.
Using a relation Eqs. (18), and Eqs. (B15, B18, B19) in
TSA07 we obtain that the integrated total power of the
resulting signal

Px =

∫

∞

0

||Fx(ω)||2dω ∼
1

DQ

Pdr
ωdrt0

. (20)

HereQ = ωdr/∆ω>

∼
1 stands for a quality factor, as∆ω

stands for a FWHM of||Fϕ(ω)||2 and a numerical factor
D>

∼
1. We emphasize thatωdrt0 � 1 because the diffu-

sion time scale in the diskt0 is likely much longer than
the timescale of (local) driving oscillationtdr ∼ ω−1

dr .

Thus using equation (20) we arrive to the conclusion that
theresulting integrated powerPx, which is related to the
perturbation amplitude at the inner disk edge, is much
less than the total integrated power of the driving oscil-
lation in the diskPdr

Px
Pdr

∼ (DQωdrt0)
−1 � 1. (21)

This is a prediction of our diffusion model. The model
can be confirmed or refuted if one can determine prod-
uct of ωdr and t0 from observations and compare this
with the observed ratio ofPx andPdr. In TSA07,§5 we
demonstrate the validity of our model using the power
spectrum of Cyg X-1 obtained in the broad frequency
range, from10−7 Hz to102 Hz.

Even though the specific mechanism providing the disk
viscosity needs to be understood, the diffusion time scale
in the disk and driving oscillation frequency “control”
the variability of the innermost region of the accretion
disk (Compton cloud). As seen from Eq. (21) the power
(rms2) of the resulting disk fluctuations should decrease
with ωdr. On the other hand it is well established (see
e.g. ST06) that the X-ray emission area (Compton cloud)
becomes more compact when the X-ray source evolves
from hard to soft states. Average driving oscillation fre-
quencyωdr should progress to higher values during this
evolution because it is scaled with some meanωK over
the Compton cloud. Probably this dependence ofPx with
ωdr is a key to explain the rms decay when the X-ray
source evolves from hard to soft states, and whenωdr in-
creases (see more details of this effect in coming paper
by Titarchuk & Shaposhnikov 2007).

3. DIFFUSION OF THE RADIAL LOCAL PER-
TURBATIONS IN THE DISK AS AN ORIGIN
OF THE ”WHITE-RED” NOISE

The diffusive propagation of the perturbation in the disk
was studied by W01 in detail. They presented the diffu-
sion equation for the surface densityΣ(R, t) as a function



of time t and the radial position in the diskR (see Eq. 5
in W01). It is worth noting that the derived equation is
valid for any disk-like configuration for which the rota-
tional frequency profile is Keplerian. This configuration
can be a Shakura-Sunyaev type of disk [8] or an advec-
tion dominated accretion flow ([5], [2]). Thus this applies
to the Compton cloud as well.

It is also important to emphasize that the equation derived
for the surface density can be used as an equation for the
surface density perturbations∆Σ(R, t) in framework of
the linear perturbation theory (see also§2.1).

In section§2 we demonstrated that the determination of
the diffusion response of the disk to the driving oscilla-
tionsϕ(t)f(R) is reduced to the convolution ofϕ(t) with
the solution of the initial value (Cauchy) problemY (R, t)
for the distributed perturbations at the initial moment
f(R) [see Eqs. (4, 5)]. Furthermore we show that the re-
sulting power spectrum||Fx(ω)||2 is a product of power
spectra||Fϕ(ω)||2 and ||FY (ω)||2 of ϕ(t) andY (R, t)
respectively (see Eq. 18).

In TSA07 we showed that for a linear dependence of the
viscosity ν̂(R) on R and a quasi-uniform distribution of
the source perturbations the power spectrum||FY (ω)||2

can be presented by an exact analytical formula{see [6],
formulas 5.1.28.1}. Thus

||FY (ν)||2ν ∝
π

23/2a3/2

sinh 21/2πa1/2 + sin 21/2πa1/2

cosh 21/2πa1/2 − cos 21/2πa1/2
−

−
π

25/2a3/2

sinhπa1/2/21/2 + sinπa1/2/21/2

coshπa1/2/21/2 − cosπa1/2/21/2
(22)

wherea = 8t0ν/π and t0 = 4R2
0/3ν̂(R0). t0 is the

viscous timescale and determines both the rise and fall
time of the response functionY (t) (see details in W01).
As it follows from this formula that

||FY (ν)||2ν = CN × π4/96 when ν � π/8t0 (23)

and

||FY (ν)||2ν = CN×
1

27π1/2t
3/2
0

1

ν3/2
when ν � π/8t0.

(24)

TSA07 also found the behavior of the power spectrum
in the case of arbitrary disk viscosity as a function of
R, namely forν̂(R) ∝ Rψ/2. We have already demon-
strated for theψ = 2 (linear) case that the power spec-
trum is a constant (the white noise) at very low frequen-
cies (ν � π/8t0) and the power law with index3/2 at
high frequenciesν � π/8t0 (so called the “red” noise).
TSA07 showed that the white-red noise (WRN) power
spectrum for theψ = 2 case is presented as a series. The
calculation of the series is reduced to analytical formula
(22) from which low and high-frequency asymptotes are
evident (see formulas 23, 24).

The similar presentation and asymptotic form of the
power spectrum can be obtained in a general case of the

disk viscosity i.e. for anyψ. Although the series of power
spectrum

||FY (ν)||2ν ∝

∞
∑

k=1

[2k − (10 − 3ψ)/2(4 − ψ) − εk/π]2δ

(8t0ν/π)2 + [2k − (10 − 3ψ)/2(4 − ψ) − εk/π]4

(25)
has to be calculated numerically [a reader can find for-
mula forεk in TSA07 (Eq. 60)] the asymptotic forms of
||FY (ν)||2ν can be easily evaluated analytically:

||FY (ν)||2ν = CN ×AL when ν � π/8t0 (26)

and

||FY (ν)||2ν = CN ×
AH

ν(3−2δ)/2
when ν � π/8t0

(27)
where

AL =
∞
∑

k=1

1

[2k − (10 − 3ψ)/2(4 − ψ) − εk/π]4−2δ
,

(28)

AH =
1

2(8t0π)(3−2δ)/2

∫

∞

x1(ν)

xδdx

1 + x4
, (29)

x1(ν) =
2t

1/2
0 λ1/π

(8t0ν/π)1/2
(30)

andδ = (ψ − 2)/(4 − ψ). Thus using this formula forδ
and Eqs. (27, 29, 30) we obtain the index of the power-
law part of the power spectrum for a givenψ:

α =
3

2
− δ =

16 − 5ψ

2(4 − ψ)
for ψ > 0

and
α = 2 for ψ < 0. (31)

In Figure 1 we show the example of white-red noise
(WRN) PDS calculated using formula (25) forψ = 2.
One can clearly see the low-frequency asymptotic form
(white-noise shoulder) and high-frequency asymptotic
form (red-noise power law with index 3/2, see Eqs 26-
27) there. For comparison we also show the PDS of an
exponential shot which has a Lorentzian shape and PDS
for the fast rise exponential decay (FRED) signal (see a
formula for the FRED PDS in TSA07, Eq.76).

4. APPLICATIONS OF THE THEORY TO CYG
X-1 AND CYG X-2 DATA

We now apply the PDS diffusion model to a data sample
from the well-studied black hole X-ray binary Cyg X-1.
The sample includes observations for all spectral states,
from low-hard to high-soft states. An identification num-
ber of each RXTE observation of this sample is presented
in Table 1 of TSA07. We also show a data sample for Cyg
X-2 which is a neutron star (NS) source. Cyg X-2 was al-
ways in the high/soft state during RXTE and EXOSAT
observations.
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Figure 1. Examples of PDS models: PDS of white-red
noise (red line), Lorentzian PDS (green line) and FRED
PDS (blue line).

For our analysis we used Cyg X-1 and Cyg X-2 data from
the Proportional Counter Array (PCA) and All-Sky Mon-
itor (ASM) onboardRXTE[11] and the medium energy
(ME) detector of the EXOSAT satellite [13]. The data are
available through the GSFC public archive1. A reader
can find the details of Cyg X-1 observations during the
entireRXTEera in [9], hereafter ST06. These data cover
the period 1996 - 2006 (MJD range∼ 50100 - 53800).

It is known that Cyg X-1 often performs state transition
from regular low/hard state to rarer soft state and vice
versa (see ST06 for more details of Cyg X-1 spectral state
history). To avoid the influence of such transitions on the
composite EXOSAT-ASM power spectrum we have sep-
arately calculated PDS for low/hard and soft states of Cyg
X-1. To identify a spectral state we have calculated the
power-law index of the photon spectrumΓ based on ASM
data from different energy channels [10]. For low/hard
state we have collected individual dwell measurements
with Γ < 1.5. For soft state we have chosen observa-
tions withΓ > 2.5 from 2002 year only. This period was
uniquely long when Cyg X-1 stayed most of the time in
the soft state.

We also employ a similar procedure to find the appro-
priate high-frequency (PCA) part of a broadband PDS.
Namely, we identify a group of PCA observations by
photon spectral index, i.e. observations in a similar spec-
tral state and choose the one with PDS low-frequency part
most closely matching the appropriate high-frequency
part of EXOSAT PDS where they overlap. Our theoret-
ical model reproduces the observable PDS shape of Cyg
X-1 down to low frequencies (see Fig. 2 - 3). In the low-
hard and high-soft states the power spectrum continuum
is fitted by our diffusion model. However, one or two rel-
atively broad Lorentzians are needed for fitting of QPO
features observed in the low-hard and intermediate states
of Cyg X-1.

1http://heasarc.gsfc.nasa.gov
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Figure 2. Cyg X-1: Observable power spectrum (PDS)
(left panel) vs photon spectrum (right panel). The first
observation is a pure low/hard state with no LF WRN
component in the PDS. During the second observation
the source energy spectrum is still hard, but LF WRN is
already detectable. PDS is fitted by a sum of LF and HF
WRN power spectra We also use Lorentzians to fit QPO
features. Black line is for the resulting PDS as red and
blue lines present LF and HF components respectively.
Photon spectrum is fitted by BMC+GAUSSIAN model,
where BMC stands for the bulk motion Comptonization
model in XSPEC. The resulting model spectrum is shown
in black, while red and blue curves present thermal and
Comptonized components respectively.

We clearly see two independent hydrodynamical compo-
nents in the accretion flow. Their presence are confirmed
by power and photon spectra. They are presumably re-
lated to an extended Keplerian disk [8] and a compact ge-
ometricaly thick sub-Keplerian halo-Compton cloud (see
[2], [5]). In Figures 2 and 3 we present the observable
evolution of RXTE/PCA PDS and photon spectra of Cyg
X-1. PDS is fitted a sum of LF and HF WRN power
spectra and a zero-centered Lorentzian plus the narrow
Lorentzians to fit QPO features. This model is consistent
with the data. We use ASM and EXOSAT data in order
to extend the PCA PDSs presented in Figs. 2-3 to much
lower frequencies. In Figure 4 we show two composite
EXOSAT/PCA PDSs of Cyg X-1 for the low/hard state.
For presentation purposes the upper PDSs are multiplied
by additional factors of103.

It is worth noting thatthe low frequency power-law slope
is either barely observed or not observed at all in PCA
data alone at low/hard state from 0.01 Hz to 100 Hz (Figs.
2, 3) but it can be clearly seen at longer time scales,
probed with EXOSAT.

Thus, EXOSAT observes the presence of low frequency
power slope related to LF part of our model along with
the presence of high frequency power slope which is the
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Figure 3. The same as Figure 2. The first observation
(upper panel) is taken during the intermediate state just
before the transition to high/soft state, which is presented
by the second observation (lower panel). No HF WRN is
present in PDS during high/soft state.
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Figure 4. Two composite PDSs: EXOSAT spectra with
matching high frequency PCA PDS. Data are fitted by
LF-HF diffusion model:χ2/Ndof = 250.1/267 = 0.94,
ψCC = 2.32 ± 0.12, t0,C = 1.8 ± 0.3, ψD = 2.5 (fixed)
andχ2/Ndof = 278.5/267 = 1.04, ψCC = 2.07 ± 0.7,
t0,C = 1.24±0.12,ψD = 0.3±0.3 (fixed) for lower and
upper fits respectively.
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Figure 5. The composite soft state PDS is made by PCA
(blue) and ASM (red) PDSs. Data are fitted by LF-HF
diffusion model:χ2/Ndof = 184/228 = 0.81, the best -
fit parameterst0,D = (6±1.7)×105 s,ψD = 2.93±0.01.

HF part of our model. One can expect that low frequency
and high frequency power-law slopes can always be ob-
served in the power spectrum of low/hard state of Cyg
X-1 if one could have simultaneously long observations
with high timing resolution. ASM/PCA PDS of the high-
soft state is shown on Figure 5.

The Composite Power Spectrum of Cyg X-2.We also
constructed the composite PDS for a neutron star source
Cyg X-2 using ASM-PCA of RXTE and EXOSAT data
in Figure 6. Cyg X-2 is most of the time in high-soft
state, when the photon spectral index is about 4 and
higher. We found that the broadband PDS in Cyg X-2
has the structure similar to Cyg X-1. Namely, PDS con-
sists of two (LF WRN and HF WRN) components. Pre-
sumably LF WRN and HF WRN components are related
to the extended Keplerian disk and to relatively com-
pact, inner disk-like configuration (sub-Keplerian Comp-
ton cloud which surrounds the neutron star) respectively.
We fit Cyg X-2 PDS using our two components model.
For the LF PDS component the best-fit parameters are:
tD,0 = (6.7 ± 1) × 105 s, ψD = 1.66 ± 0.06, and for
the HF PDS component they aretC,0 = 0.8056± 0.0001
s,ψCC = 3.11 ± 0.02. QPO lowest frequency isνL =
60.03 ± 2.25 Hz.

5. THE MAIN RESULTS AND CONCLUSIONS

We conclude by summarizing the main results of the pre-
sented diffusion theory.

We have presented a detailed mathematical analysis of
the perturbation diffusive propagation. We investigated
the intrinsic properties of the disk density evolution equa-
tion (7) with the appropriate boundary and initial condi-
tions in a general case. We have analyzed the diffusion
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Figure 6. EXOSAT-ASM-PCA (RXTE) power spectrum
of Cyg X-2 in frequency range that covers 10 orders of
magnitude. One can clearly see low and high frequency
(LF and HF) white-red noise components in PDS, related
to the extended Keplerian disk and relatively compact,
innner disk-like configuration (sub-Keplerian Compton
cloud) respectively. Each of these two components is
perfectly fitted by our white-red noise model, dotted and
solid lines are for LF and HF best-fit models respectively,
χ2/Ndof = 393.2/244 = 1.6 (see the text for the best-fit
parameters values).

models determined by the disk viscosity dependence on
the radius for various perturbation sources in the disk. We
have examined the case where the viscosity is a power
law function of position in the disk. Using the perturba-
tions of the disk surface density∆Σ(r, t) we are able to
infer the evolution of the perturbations of the mass ac-
cretion rate in the inner disk edge and ultimately the per-
turbations of the X-ray luminosity as a function of time,
∆Lx(t). Then we calculate the power spectrum using the
Fourier transforms of∆Lx(t) and the driving perturba-
tions. The PDS continuum (White-Red-Noise) is a power
spectrum of the diffusion response of the disk-like config-
uration to the high frequency (local) driving disk oscilla-
tions. Whereas X-ray photon spectrum is the result of
the soft photon diffusion upscattering (Comptonization)
in the disk-like configuration (Compton cloud), the PDS
is formed in the same configuration as a result of the dif-
fusive propagation of high-frequency local driving per-
turbations. This solution is robust and generic.

The resulting model time signal as a linear combination
of quite a fewrelatedexponential shots is in a good agree-
ment with the observations. The observable PDS is per-
fectly fitted by a sum of LF and HF white-red noise power
spectra.This fact can be interpreted as an observational
evidence of the presence of two independent components
in the accretion flow.One is related to the extended ge-
ometrically thin disk (LF PDS component) and the other
- to the geometrically thick compact configuration (HF
PDS component). Each of the white-red noise (WRN)
components has two free parameters, the diffusion time

scalet0 and the viscosity indexψ. The value of the pa-
rametert0 has a physically plausible value for the viscous
timescale of the disk-like configuration.

In the observed power spectra (particularly in the inter-
mediate state) we deal with two diffusion time scales,
onetC,0 is related to the inner compact region, presum-
ably Compton cloud (sub-Keplerian disk, ADAF) and the
othertD,0 is related to a much larger disk. The diffusion
time scale of the inner region is scaled with the mass of
the central object andtD,0 is scaled with the orbital pe-
riod of the system.

We present the broadband PDSs of the black hole source
Cyg X-1 in hard (Fig. 4) and soft (Fig. 5) states, illustrat-
ing the presence of LF and HF components in hard state
and the absence of HF component (or a weak HF) in the
soft state. In Figures 2, 3 we show the evolution of LF and
HF components in high frequency PDS of Cyg X-1. We
also find that Cyg X-2 PDS also consists of LF and HF
components (see Figure 6). The best-parameters of the
model allows us to determine the diffusion time scales of
geometrically thin extended disktD,0 and geometrically
thick configuration (Compton cloud)tC,0. They differ by
almost six orders of magnitude, namelytD,0 ∼ 0.7×106

s andtC,0 ∼ 0.8 s.
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