A JEM-X CATALOG OF X-RAY SOURCES

Niels J. Westergaard, Jérôme Chenevez, Niels Lund, Carl Budtz–Jørgensen, and Søren Brandt

Danish National Space Center, Juliane Maries Vej 30, Copenhagen, Denmark

ABSTRACT

The JEM–X catalog of X-ray sources presented here is based on detections in individual science windows with a sensitivity limit of about 10 mCrab (5-15 keV). It contains 127 sources and only those that can be identified from the existing reference catalog. The input data are taken from the, up to now, ~300 INTEGRAL orbits with public data.

Key words: JEM–X; X-ray source catalog.

1. INTRODUCTION

The search for sources has been performed in images from individual pointings (Science Windows). Extracting sources from mosaic images and thereby obtaining better sensitivity for persistent sources is the goal of ongoing activities and has so far led to the discovery of three new X-ray sources [1, 2, 3].

Both JEM–X [4] instruments have been used, JEM–X2 through INTEGRAL revolutions 39-170 and JEM–X1 from 170 to 326 (with some exceptions, see later). A large part of the sky is covered as illustrated in Fig. 1 which is a map of the combined exposure time.

The image reconstruction process includes a backprojection method taking into account a detailed model of the instrument and then an IROS (Iterative Removal Of Sources) algorithm for finding weaker sources.

In spite of the effort to exclude spurious sources automatically a number of these will appear in the list of sources. The most efficient way of removing those is to demand that the source should exist in a reference catalog of Xray sources and here we have used version 25 of the IN-TEGRAL General Reference Catalog [5].

The JEM–X catalog itself is given in table 1 on the last page of this paper and the explanations for the columns are given immediately before the table.

The 2nd IBIS/ISGRI soft gamma-ray survey catalog [6] contains about 200 sources. There are more sources because the ISGRI FOV is much larger than the JEM–X FOV and the collecting area is also larger. The sources

seen by JEM–X but not reported in [6] are marked (†) in table 1.

2. DATA ANALYSIS

All science windows i.e. individual pointings of typical duration between 1500 s and 2000 s have been analyzed for sources in the four energy intervals: 3-4, 4-8, 8-15, and 15-25 keV. The analysis software system is OSA-5.1 (Offline Analysis Software) by ISDC (INTE-GRAL Science Data Center, Versoix, Switzerland).

The revolutions used for JEM–X2 are: 10, 12, 13, 20-170, 179, 208, 239, 300, 365. The revolutions used for JEMX–1 are: 10, 12, 13, 24, 25, 39-45, 102, 103, 167, 170-252, 255-276, 278-285, 287-295, 300-303, 308-323, 326, 357-360, 365.

The four images produced (one for each energy band) are searched independently for peaks characterized by a detection significance which is the highest peak value divided by the RMS value of the immediate surrounding. A source is accepted if it appears at the same place in at least two of the images with a detection significance larger than 3 or in a single image with a detection significance larger than 10. In total 20,000 source candidates are registrered during the survey of which 1100 are spurious i.e. not identified.

22470 science windows have been searched and source candidates were found in 11071 of those. The catalog was constructed by grouping sources sufficiently close to each other (less than 5'), deriving the average position by weighting with the individual detection significances. The sources included in the JEM–X source catalog are the ones with a position deviation less than 5' from a source in the reference catalog.

3. SOURCE LOCALIZATION ACCURACY

The error of the source localization has a counting statistics and a systematic component. The analysis of Budtz-Jørgensen *et al.* [7] demonstrates a weak dependence on temperature of the satellite structure measured at the mask which is not taken into account in the present anal-

Figure 1. Map in galactic coordinates of exposure time in the science windows used for the present catalog. The contour lines are at 10^2 , 10^3 , 10^4 , and 10^5 s.

ysis. Another effect is the not quite accurate detector response modelling used in the IROS process. Fig. 2 shows the deviation between the found source positions and the reference catalog positions as a function of maximal detection significance for the individual source.

Figure 2. The source position deviation from the reference catalog plotted against the maximal detection significance. The open circles represent sources with one or two detections, the filled circles have more than 2 detections and those that have an extra circle have been detected more than 150 times. GRS 1915+105 is indicated because it has the highest detection significance and 4U 1901+03 is highlighted because the reference catalog position probably is off by ~40".

Four sources: IGR J18450-0435, 3EG J1639-4702, AX J1637.8-4656, and AX J1911.0+0906 deviate more than 150" from the reference catalog position. Each is only detected once so the identification might be ques-

tioned and they are subject to further investigation.

On the other hand 4U 1901+03 is a well established source where the JEM–X position deviates $\sim 40''$ from the reference catalog position that perhaps should be revised.

The 2σ confidence limit for source localization in single science windows is defined as the radius that contains 95% of the individual detections in each of four off-axis angle intervals as given in Fig. 3.

Figure 3. The 95% confidence limits for the localization accuracy determined as a function of the detection significance. The results from four off-axis angle intervals are shown.

4. DETECTION SENSITIVITY

The JEM–X sensitivity has been determined as the lower intensity limit of the identifiable sources. The exposure time was selected to be around 2000 s, which is typical for the INTEGRAL science window durations. Fig. 4 shows the result given in cgs units in the interval where JEM–X is most sensitive (highest effective area).

Figure 4. The source detection limit for an observation time of $\sim 2000 \text{ s.}$ The dashed lines gives the comparison with the Crab flux.

5. CRAB NEBULA

The Crab Nebula needs special attention since it is an extended X-ray emitter (see Fig. 5) of diameter of $\sim 1'$. The position is therefore not so well defined and SIMBAD as well as the ISDC reference catalog quote the Crab Pulsar position (RA: 83.6332°, Dec: 22.0145°, J2000).

Since JEM–X is not able to resolve this source the measured position will represent the centroid of the distribution of the emission. As a first approximation to derive that a Chandra image was used (acisf01999N001) as shown in Fig. 5.

The centroid of the Chandra observation excluding the pulsar is at 83.6296°, 22.0182°, whereas the JEM–X position found here is 83.6307°, 22.0176° which is between the Chandra centroid and the pulsar. Hence the reference catalog position is not adequate for an instrument that cannot resolve the nebula.

ACKNOWLEDGEMENTS

Based on observations with INTEGRAL, an ESA project with instruments and science data centre funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Switzerland, Spain), Czech Republic and Poland, and with the participation of Russia and the USA.

Figure 5. Chandra image of the Crab Nebula. The double ring indicates the position of the centroid of the count distribution. The square is the position of the j_ima_iros position (764 observations) and the smaller circle indicates the pulsar ('Crab' position in the reference catalog).

REFERENCES

- [1] Chenevez et al., 2004, ATEL#223.
- [2] Chenevez et al., 2006, ATEL#756.
- [3] Kuulkers, J. et al., 2006, A&A in preparation.
- [4] Lund, N. et al., 2003, A&A, 411, L231.
- [5] Ebisawa et al. (2003) Astron. & Astrophys. 411, 59.
- [6] Bird, A.J., Barlow, E.J., Bassani, L., et al., 2006, ApJ, 636, 765.
- [7] Budtz-Jørgensen, C., Lund, N., Westergaard, N.J. et al., 2006, Proc. SPIE Vol. 6266.

6. THE CATALOG

6.1. Description of columns

The sources that are not found in the IBIS catalog [6] are marked with a dagger (†). The dubious sources far from their positions in the reference catalog [5] are marked with an asterisk (*).

R.A. Right Ascension (J2000) in degrees.

Dec Declination (J2000) in degrees.

Err Error radius (1σ) in arcmin.

N Number of detections in the entire survey.

Table 1 The IEM Y Catalog					IGR J17098-3628 [†]	257.421	-36.447	2.13	1
Source name	$\frac{e J E M - A}{P A}$	Dec	Err	N	Oph Cluster	258.081	-23.356	2.13	1
$\frac{100201}{5024^{\dagger}}$	T.A.	50 566	0.20	16	4U 1708-40	258.094	-40.841	0.52	22
GR J00291+3934	0.222	59.500 61.254	0.59	40	XTE J1/16-389	258.964	-38.856	1.51	2
GK J00570+0122'	9.525	01.554 60.711	1.31	2 4	ATE J1/20-318	259.995	-31./31	0.43	33
ani Cas	14.211	73 444	0.40	25	40 1722-30	201.889	-30.804	0.25	172
SA 0114+650	19.271	65 283	0.49	23	GX 354 0	202.935	-10.902	0.25	762
$10115+634^{\dagger}$	19.525	63 744	0.33	59	GX 1+4	202.909	-55.854	0.19	205
X 10146 0±6121 [†]	26 744	61 351	1.51	2	0A 1+4 AU 1730 335	203.011	-24.747	0.24	205
A J0140.7+0121	20.744 49.946	41 514	0.37	46	40 1730-335 SI X 1735-260	203.333	-35.390	0.20	145
$300.0331 \pm 530^{\dagger}$	53 746	53 176	0.37	123	4U 1735-444	264.575	-44 450	0.00	191
$MC X_2^{\dagger}$	80 130	-71 955	0.20	123	IGR 117391-3021	264.742	-30 337	1 24	171
MC X-4	83 219	-66 366	0.27	161	SLX 1737-282	265 171	-28 298	2.13	1
Trah	83 631	22 017	0.25	1038	XTE J1743-363	265.796	-36.370	2.13	1
$MC X_3^{\dagger}$	84 730	-64 083	0.10	1050	1E 1740.7-2942	265.989	-29.753	0.25	156
$MC X_{-1}^{\dagger}$	84 935	-69 736	0.55	127	1A 1742-294	266.528	-29.519	0.21	332
10614 ± 091	94 283	9 135	0.20	127	IGR J17464-3213	266.565	-32.233	0.19	781
/ela Pulsar	128 844	-45 198	2.13	12	1A 1743-288	266.761	-28.883	0.26	138
linga (1836-429	129.347	-42,892	0.22	251	SLX 1744-299	266.858	-30.017	0.31	72
/ela X-1	135 531	-40 553	0.22	186	GX 3+1	266.986	-26.564	0.18	1646
1 0918-549	140 112	-55 213	0.21	8	SLX 1746-331 [†]	267.452	-33.202	0.28	132
GRO J1008-57	152.450	-58.301	0.44	34	1H 1746-370	267.553	-37.051	0.25	175
len X-3	170.322	-60.625	0.24	205	GRS 1747-312	267.690	-31.276	0.46	30
GR J11215-5952 [†]	170.449	-59.874	0.85	200	IGR J17544-2619	268.608	-26.344	1.56	2
$+R 4492^{\dagger}$	174.862	-65.394	1.28	3	GX 5-1	270.286	-25.077	0.18	1233
GR J11435-6109 [†]	175.975	-61.123	2.13	1	GRS 1758-258	270.300	-25.742	0.62	15
E 1145.1-6141	176.876	-61.955	0.45	36	GX 9+1	270.384	-20.530	0.21	471
I 1145-619	177.020	-62.213	0.66	13	GX 13+1	273.630	-17.158	0.22	317
IGC 4151	182.635	39.403	0.28	104	4U 1812-12	273.756	-12.098	1.25	3
NGC 4388	186.457	12.651	0.93	6	GX 17+2	274.005	-14.036	0.21	343
GX 301-2	186.661	-62.770	0.32	90	H 1820-303	275.918	-30.359	0.21	358
C 273	187.277	2.048	0.55	19	AX J1824.7-1253 [†]	276.194	-12.900	2.13	1
A 1246-588	192.438	-59.113	2.13	1	H 1822-000	276.340	-0.011	0.29	94
H 1254-690	194.404	-69.290	0.47	29	3A 1822-371	276.446	-37.104	0.29	93
RXP J130159.5-63580	195.513	-63.961	2.13	1	Ginga 1826-24	277.367	-23.796	0.27	128
Cen A	201.365	-43.012	0.30	86	Ser X-1	279.988	5.036	0.21	366
U 1323-62	201.662	-62.141	0.48	28	IGR J18410-0535	280.259	-5.601	1.54	2
C 4329A	207.338	-30.318	1.00	5	IGR J18450-0435*	281.241	-4.546	1.68	2
NGC 5506 [†]	213.316	-3.217	0.71	10	Ginga 1843+009	281.384	0.868	0.82	8
Cir X-1	230.171	-57.166	0.21	353	IGR J18483-0311	282.057	-3.164	1.57	2
H 1538-522	235.594	-52.383	0.27	130	3A 1850-087	283.261	-8.696	1.25	3
U 1543-624	236.982	-62.568	0.32	69	XTE J1855-026	283.873	-2.606	0.62	14
KTE J1550-564	237.744	-56.471	0.27	119	XTE J1858+034	284.678	3.436	0.33	78
H 1556-605 [†]	240.270	-60.738	0.45	30	4U 1901+03	285.913	3.204	0.22	247
H 1608-522	243.178	-52.423	0.25	187	H 1907+097	287.400	9.833	0.33	77
Sco X-1	244.979	-15.640	0.28	109	AX J1910.7+0917 [†]	287.676	9.279	2.13	1
H 1624-490	247.011	-49.198	0.20	508	4U 1909+07	287.698	7.593	0.53	20
GR J16318-4848	247.938	-48.816	1.42	3	AX J1911.0+0906 ^{†*}	287.737	9.053	1.51	2
GR J16320-4751	248.020	-47.878	0.63	14	Aql X-1	287.816	0.584	0.26	169
4U 1630-47	248.507	-47.393	0.22	344	SS 433	287.946	4.986	0.30	86
AX J1637.8-4656 [†] *	249.526	-47.032	2.13	1	IGR J19140+0951	288.512	9.881	0.82	ç
3EG J1639-4702 [†] *	249.638	-46.937	2.13	1	GRS 1915+105	288.798	10.946	0.18	853
GR J16393-4643	249.800	-46.729	2.13	1	40 1916-053	289.696	-5.234	0.27	113
H 1636-536	250.231	-53.750	0.21	321	KS 1947+300	297.400	30.206	0.98	7
GX 340+0	251.451	-45.612	0.19	652	3A 1954+319'	298.919	32.088	1.04	6
GR J16479-4514	252.012	-45.185	2.13	1	Cyg X-1	299.586	35.202	0.21	345
GRO J1655-40 [†]	253.501	-39.845	0.42	44	4U 1957+115'	299.853	11.713	1.58	2
DAO 1657-415	255.201	-41.653	0.33	74	EXO 2030+375	308.063	37.638	0.29	122
GX 339-4	255.707	-48.790	0.24	210	Cyg X-3	308.106	40.957	0.19	696
U 1700-377	255.987	-37.844	0.24	194	SAX J2103.5+4545	315.892	45.753	0.33	67
GX 349+2	256.437	-36.424	0.21	366	SS Cyg	325.693	43.590	1.35	3
H 1702-429	256.561	-43.035	0.30	101	Cyg X-2	326.168	38.320	0.28	124
H 1705-440	257.226	-44.102	0.24	237	3A 2206+543	331.979	54.519	1.21	4
XTE J1709-267	257.368	-26.652	1.51	2	Cas A	350.860	58.818	0.20	364