Table 2. The complete catalogue of hard X-ray sources detected in 100 - 150 keV band available in the online version of the paper.

Id	Name	Ra	Dec	$Flux_{100-150 \text{ keV}}$	Range	Type	Ref.*	Notes†
		deg	deg	$\mathrm{erg} \mathrm{cm}^{-2} \mathrm{s}^{-1}$	orbits			
1	IGR J00291+5934	7.26	59.57	$0.5 \pm 0.2 \ (2.7)$		LMXB	1,2a	accreting millisecond pulsar; V* V1037 Cas;
-				11.5 ± 0.9	$0261 \ 0263$			
2	PSR J0146+6145	26.59	61.75	3.5 ± 0.2		PSR	2b	AXP; 4U 0142+61;
3	NGC 788	30.28	-6.82	$1.5 \pm 0.4 \ (4.1)$		AGN		Sy2 $z=0.0136;$
4	$4U\ 0241{+}61$	41.24	62.46	$1.7 \pm 0.3 \ (5.1)$		AGN		Sy1 z=0.044557;
5	$4U \ 0352 + 30$	58.85	31.04	5.6 ± 0.4		HMXB		X Per;
6	3C111	64.58	38.02	$1.6 \pm 0.4 \ (4.0)$		AGN		Sy1 $z=0.0485;$
7	RX J0440.9+4431	70.23	44.56	< 0.7		HMXB	3	
-				$7.5 \pm 1.5 \ (5.0)$	$0963 \ 0965$			
8	IRAS 05078+1626	77.68	16.50	$1.4 \pm 0.3 \ (4.4)$		AGN		Sy1 $z=0.017879;$
9	AKN 120	79.04	-0.14	$1.6 \pm 0.4 \ (4.4)$		AGN		Sy1 $z=0.0323;$
-				$2.7 \pm 0.5 \ (5.6)$	0529 0591			
10	Crab	83.63	22.02	402.1 ± 0.2		PSR		TeV $J0534+220;$
11	A $0535 + 262$	84.73	26.34	5.5 ± 0.3		HMXB		
-				46.0 ± 0.9	$1018 \ 1026$			
12	PSR0540-69	85.00	-69.34	$1.2 \pm 0.2 \ (6.5)$		PSR		
13	NGC 2110	88.05	-7.46	5.4 ± 0.5		AGN		Sy2 z=0.007579;
14	MRK 3	93.90	71.04	$2.6 \pm 0.7 \ (3.7)$		AGN		Sy2 z=0.013443;
-				$3.7 \pm 0.7 \ (5.7)$	$0130 \ 0856$			
15	$4U\ 0614{+}091$	94.28	9.13	$4.5 \pm 0.7 \ (6.7)$		LMXB	4	burster;
16	Vela pulsar	128.84	-45.18	3.0 ± 0.2		PSR		TeV J07835-453;
17	4U 0836-429	129.35	-42.90	2.4 ± 0.2		LMXB	5	burster;
-				13.0 ± 0.5	$0136 \ 0154$			
18	$S5 \ 0836 + 71$	130.35	70.91	2.4 ± 0.2		AGN	6	Blazar; $z=2.1720;$
19	Mrk 421	166.12	38.21	$3.6 \pm 0.4 \ (8.3)$		AGN		Blazar $z=0.03$; TeV J1104+382;
20	NGC 3516	166.72	72.56	$1.5 \pm 0.2 \ (6.1)$		AGN		Sy1 $z=0.008816;$
21	A1145.1-6141	176.86	-61.97	$0.9 \pm 0.2 \ (3.6)$		HMXB		$C{X1145-619}$
-				$8.2 \pm 1.7 \ (4.8)$	$1058 \ 1132$			
22	NGC 4151	182.63	39.41	10.8 ± 0.3		AGN		Sy1 $z=0.003262;$
23	NGC 4235	184.29	7.20	$1.3 \pm 0.2 \ (7.1)$		AGN		Sy1 $z=0.007772;$
24	$PKS \ 1219{+}04$	185.60	4.22	$1.0 \pm 0.2 \ (5.7)$		AGN		Blazar; $z=0.965001;$
25	NGC 4388	186.45	12.66	4.9 ± 0.2		AGN		Sy2 $z=0.008426;$
26	3C273	187.28	2.05	8.5 ± 0.2		AGN		Blazar; $z=0.15834;$
27	NGC 4507	188.90	-39.91	$3.3 \pm 0.6 \ (5.2)$		AGN		Sy2 z=0.011771;
28	NGC 4593	189.91	-5.35	$1.6 \pm 0.3 \ (5.9)$		AGN		Sy1 $z=0.0090;$
29	4U 1246-588	192.41	-59.09	$1.2 \pm 0.2 \ (4.8)$		LMXB	$7,\!8$	burster;
30	NGC 4945	196.36	-49.47	6.0 ± 0.3		AGN		Sy2 $z=0.001908;$
31	Cen A	201.36	-43.02	26.3 ± 0.4		AGN		Sy2 $z=0.001830;$
32	4U 1323-619	201.65	-62.13	2.0 ± 0.2 (7.9)		LMXB	9	burster;
33	NGC 5252	204.57	4.55	3.4 ± 0.4 (8.4)		AGN		Sy2 z=0.022219;
								Continued on next page

Table 2 – continued from previous page

Id	Name	Ra	Dec	$Flux_{100-150 \text{ keV}}$	Range	Type	Ref.*	Notes†
		deg	deg	$\rm erg \ cm^{-2} s^{-1}$	orbits			
34	4U 1344-60	206.90	-60.62	$1.4 \pm 0.2 \ (6.2)$		AGN		Sy1.5 $z=0.013;$
35	IC 4329A	207.33	-30.31	$3.4 \pm 0.5 \ (6.4)$		AGN		Sy1 z= 0.016024 ; =ESO 445-50
36	Circinus galaxy	213.29	-65.34	$1.5 \pm 0.3 \ (5.7)$		AGN		Sy2 $z=0.001421;$
37	PSR B1509-58	228.48	-59.14	6.0 ± 0.3		PSR		TeV J1513-591;
38	IGR J15390-6226	234.76	-62.43	< 0.6		LMXB?	10,11	BHC; SWIFT J1539.2-6227;
_				$6.0 \pm 1.1 \ (5.7)$	$0769 \ 0785$			
39	$1E \ 1547.0-5408$	237.72	-54.31	$1.7 \pm 0.2 \ (7.8)$		PSR	12	AXP;
40	XTE J1550-564	237.76	-56.46	8.9 ± 0.2		LMXB	13	BHC;
41	4U 1608-522	243.18	-52.42	4.2 ± 0.2		LMXB	14	burster;
42	Sco X-1	244.98	-15.64	3.5 ± 0.3		LMXB		NS;
43	4U 1630-47	248.52	-47.39	5.1 ± 0.2		LMXB	15	C{IGR J16336-4733,IGR J16358-4726} BHC;
44	4U 1636-536	250.23	-53.75	2.4 ± 0.2		LMXB	16	burster;
45	GX 340+0	251.45	-45.61	$0.5 \pm 0.2 \ (3.3)$		LMXB		NS;
-				$2.9 \pm 0.6 \ (4.7)$	$0770 \ 0850$			
46	IGR J16479-4514	252.02	-45.21	$0.2 \pm 0.2 \ (1.0)$		HMXB	17,18	2MASS J16480656-4512068;
_				$2.1 \pm 0.5 \ (4.1)$	0910 1030			
47	IGR J16482-3036	252.05	-30.58	$1.0 \pm 0.2 \ (4.2)$		AGN	19,20	Sy1 z=0.031; 2MASX J16481523-3035037;
48	XTE J1652-453	253.08	-45.34	< 0.3		LMXB?	21	BHC;
-				$7.6 \pm 1.1 \ (7.0)$	$0843 \ 0851$			
49	MKN 501	253.47	39.76	$1.9 \pm 0.4 \ (5.3)$		AGN		Blazar; BL Lac $z=0.033640;$
50	GRO J1655-40	253.50	-39.84	3.4 ± 0.2		LMXB	22	BHC;
-				47.6 ± 0.7	$0288 \ 0296$			
51	IGR J16562-3301	254.09	-33.04	$1.4 \pm 0.2 \ (7.7)$		AGN	23	Blazar; BL Lac; SWIFT J1656.3-3302; $z=2.40$;
52	MAXI J1659-152	254.79	-15.27	$2.6 \pm 0.3 \ (7.9)$		LMXB	24	BHC;
-				27.2 ± 1.0	$0971 \ 0977$			
53	OAO 1657-415	255.20	-41.66	$1.7 \pm 0.2 \ (9.9)$		HMXB		
54	XTE J1701-407	255.43	-40.86	$0.8 \pm 0.2 \ (4.7)$		LMXB	$25,\!26$	burster;
-				$3.9 \pm 0.6 \ (6.9)$	0894 0910			
55	GX 339-4	255.71	-48.79	25.5 ± 0.2		LMXB	27	BHC;
-				128.5 ± 0.5	$0895 \ 0911$			
56	4U 1700-377	255.98	-37.84	16.6 ± 0.2		HMXB		
57	GX 349+2	256.43	-36.42	< 0.3		LMXB		NS;
-				$5.1 \pm 1.3 \ (4.1)$	$0113 \ 0117$			
58	4U 1702-429	256.56	-43.04	1.8 ± 0.2		LMXB	28	burster;
59	IGR J17062-6143	256.58	-61.70	$1.3 \pm 0.4 \ (3.5)$		LMXB	29,30,31	burster; SWIFT J1706.6-6146;
-				$4.4 \pm 0.8 \ (5.3)$	0617 0791			
60	PSR J1708-4008	257.20	-40.15	$1.1 \pm 0.2 \ (6.7)$		PSR	32a	AXP; 1RXS J170849.0-400910;
61	4U 1705-440	257.23	-44.10	$1.1 \pm 0.2 \ (6.7)$		LMXB	32b	burster;
62	IGR J17091-3624	257.29	-36.41	3.5 ± 0.2		LMXB	33,34,35	C{IGR J17098-3628} BHC;
_				28.5 ± 0.9	1016 1020			
63	SAXJ1712.6-3739	258.16	-37.64	$1.4 \pm 0.2 \ (9.0)$		LMXB	36	burster;
								Continued on next page

Krivonos et al.

 \sim

Table 2 – continued from previous page

Id	Name	Ra	Dec	$Flux_{100-150 \text{ keV}}$	Range	Type	Ref.*	$Notes^{\dagger}$
		deg	deg	$\rm erg \ cm^{-2} s^{-1}$	orbits			
64	4U 1724-30	261.88	-30.80	3.0 ± 0.1		LMXB	37	burster; Terzan 2;
65	GX 354-0	262.99	-33.83	3.8 ± 0.1		LMXB		burster;
66	GX 1+4	263.01	-24.74	4.7 ± 0.2		LMXB	38	XP;
67	IGR J17331-2406	263.25	-24.14	< 0.3		LMXB?	39,40	BHC; Galactic transient;
—				$3.9 \pm 0.6 \ (6.1)$	$0228 \ 0240$			
68	RapidBurster	263.35	-33.39	$0.3 \pm 0.1 \ (2.5)$		LMXB		burster;
—				$2.1 \pm 0.5 \ (4.5)$	0106 0116			
69	GRS 1734-292	264.37	-29.13	$1.3 \pm 0.1 \ (9.9)$		AGN		Sy1 $z=0.021400;$
70	SLX 1735-269	264.57	-26.99	2.4 ± 0.1		LMXB	41	burster;
71	IGR J17402-3656	265.09	-36.92	< 0.3		HMXB?	42	=IGR J17404-3655;
—				$5.7 \pm 1.3 \ (4.5)$	$1222 \ 1224$			
72	SLX 1737-282	265.17	-28.31	$1.2 \pm 0.1 \ (8.8)$		LMXB	43	$C{XTE J1739-285}$ burster;
72								C{IGR J17407-2808,IGR J17419-2802}
73	IGR J17418-1212	265.48	-12.20	$1.1 \pm 0.3 \ (4.3)$		AGN	44,45	2E 1739.1-1210; Sy1 z=0.037;
74	1E 1740.7-294	265.98	-29.73	17.8 ± 0.1		LMXB	46	C{KS1741-293,A 1742-294} BHC;
75	KS1741-293	266.24	-29.34	$0.8 \pm 0.1 \ (6.3)$		LMXB	47	$C{1E 1740.7-294}$ burster;
76	GRS 1741.9-2853	266.25	-28.92	$0.5 \pm 0.1 \ (3.9)$		LMXB	48	$C{AX J1745.6-2901}$ burster;
—				$5.7 \pm 0.9 \ (6.4)$	$0535 \ 0543$			$C{1E 1743.1-2843,SAX J1747.0-2853}$
77	Swift J174510.8-262411	266.30	-26.40	9.2 ± 0.1		LMXB	49	BHC;
—				113.6 ± 0.4	$1212 \ 1226$			
78	A 1742-294	266.52	-29.52	$0.8 \pm 0.1 \ (6.0)$		LMXB	50	$C{1E 1740.7-294}$ burster;
79	IGR J17464-3213	266.56	-32.23	7.6 ± 0.1		LMXB	$51,\!52$	H1743-322/XTE J1746-322; BHC;
—				68.8 ± 0.5	$1215 \ 1225$			
80	1E 1743.1-2843	266.58	-28.74	$0.6 \pm 0.1 \ (4.6)$		LMXB		$C{SAX J1747.0-2853}$
81	SLX1744-299/300	266.83	-30.01	$1.3 \pm 0.1 \ (10.0)$		LMXB		$C{A 1742-294}$ burster;
82	IGR J17473-2721	266.84	-27.35	$0.6 \pm 0.1 \ (4.4)$		LMXB	$53,\!54,\!55$	burster;
—				$22.9 \pm 2.5 \ (9.0)$	0714 0720			
_				27.2 ± 1.3	$0666 \ 0674$			
83	IGR J17497-2821	267.40	-28.35	$0.9 \pm 0.1 \ (6.7)$		LMXB	56, 57, 58	BHC;
_				37.5 ± 0.9	$0480 \ 0496$			
84	SLX 1746-331	267.47	-33.19	<0.3		LMXB		BHC;
-				$3.8 \pm 0.5 \ (6.9)$	$0106 \ 0112$		F O 00	
85	IGR J17498-2921	267.48	-29.32	< 0.3		LMXB	$59,\!60$	burster, ms pulsar;
_				8.6 ± 0.8	$1078 \ 1082$			
86	SAX J1750.8-2900	267.60	-29.04	$0.5 \pm 0.1 (4.0)$		LMXB	61	$C{IGR J17507-2856}$ burster;
-			00.00	$2.5 \pm 0.4 (6.0)$	0603 0779	1 1 (37)		DUC
87	XTE J1752-223	268.04	-22.32	$0.5 \pm 0.1 (3.1)$		LMXB		BHC;
-		000 05	1 15	30.2 ± 1.1	0913 0919	1 1 (37)	00.00	DUC
88	SWIFT J1753.5-0127	268.37	-1.45	39.9 ± 0.3	0044.0050	LMXB	62,63	BHC;
-	OV F 1	070.00	05.00	52.8 ± 0.3	0344 0852	LMND		NG
89	GA 5-1	270.29	-25.08	$0.4 \pm 0.1 \ (2.9)$		LMXB		NS;
								Continued on next page

ಲು

|--|

Id	Name	Ra	Dec	$Flux_{100-150 \text{ keV}}$	Range	Type	Ref.*	Notes†
		deg	deg	$\mathrm{erg} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$	orbits			
_				$5.5 \pm 1.3 \ (4.2)$	1154 1162			
90	GRS 1758-258	270.30	-25.74	27.2 ± 0.1		LMXB	64	BHC;
91	SAX J1806.5-2215	271.64	-22.25	$0.4 \pm 0.2 \ (2.5)$		LMXB	65	burster;
-				$2.1 \pm 0.5 \ (4.3)$	$1213 \ 1229$			
-				7.4 ± 1.8 (4.2)	$1139\ 1145$			
-				$8.7 \pm 1.7 (5.1)$	$1276 \ 1290$			
92	SAX J1808.4-3658	272.11	-36.98	< 0.3		LMXB		ms pulsar
-				$15.3 \pm 2.3 \ (6.6)$	$0726 \ 0726$			
93	PSR J1808-2024	272.17	-20.41	$1.0 \pm 0.2 (5.9)$		PSR		SGR; SGR 1806-20; HESS J1808-204;
94	XTE J1810-189	272.59	-19.07	0.4 ± 0.2 (2.1)		LMXB		burster;
-				10.2 ± 2.3 (4.4)	$1286 \ 1288$			
-				8.3 ± 0.8	0654 0672			
95	V4722 Sgr	272.69	-26.15	$0.5 \pm 0.1 \ (3.6)$		LMXB	66	burster; =SAX J1810.8-2609; =RX J1810.7-2609;
_				7.1 ± 0.6	$0593 \ 0611$			
96	GX 13+1	273.63	-17.16	$0.7 \pm 0.2 \ (4.0)$		LMXB	67	burster;
97	M 1812-12	273.78	-12.09	8.4 ± 0.2		LMXB	68	burster;
98	GX 17+2	274.01	-14.04	$1.2 \pm 0.2 \ (6.6)$		LMXB		burster;
99	XTE J1817-330	274.43	-33.02	0.9 ± 0.2 (5.8)		LMXB		BHC;
_				11.8 ± 0.6	0407 0421			,
100	MAXI J1828-249	277.24	-25.03	< 0.4		LMXB	69	BHC;
—				$13.3 \pm 1.8 \ (7.5)$	1344 1346			
101	GS 1826-24	277.37	-23.80	14.3 ± 0.2		LMXB	70a	burster;
102	SNR 021.5-00.9	278.39	-10.57	$1.0 \pm 0.2 \ (5.2)$		PSR	70b,70c	PSR J1833-1034; HESS J1833-105;
103	PKS 1830-211	278.42	-21.06	2.6 ± 0.2		AGN	71	Blazar; $FSRQ$; $z=2.507$;
104	MAXI J1836-194	278.93	-19.32	$1.4 \pm 0.2 \ (6.9)$		LMXB	72	BHC;
_				21.1 ± 1.0	1090 1094			
105	RX J1832-33	278.93	-32.99	2.2 ± 0.2		LMXB		
106	AX J1838.0-0655	279.50	-6.92	$1.7 \pm 0.2 \ (8.8)$		PSR/PWN	73a	HESS J1837-069;
107	1E1841-045	280.33	-4.94	2.3 ± 0.2		PSR/PWN		
108	GS 1843+00	281.40	0.87	< 0.4		HMXB		
-				$6.5 \pm 1.6 \ (4.1)$	$0782 \ 0788$			
109	PSR J1846-0258	281.61	-2.98	$1.2 \pm 0.2 \ (6.1)$		PSR/PWN	73b	HESS J1846-029;
110	IGR J18490-0000	282.26	-0.02	0.9 ± 0.2 (4.7)		PSR/PWN	74,75	HESS J1849-000;
111	4U 1850-087	283.27	-8.71	1.0 ± 0.2 (4.9)		LMXB	,	burster;
112	XTE J1855-026	283.88	-2.60	<0.4		HMXB		,
_				$4.4 \pm 1.0 \ (4.3)$	$0243 \ 0251$			
113	HETE J19001-2455	285.04	-24.92	4.8 ± 0.3		LMXB	76	AMXP,burster;
114	4U 1907+097	287.41	9.83	< 0.3		HMXB		
-				$4.1 \pm 0.9 \ (4.6)$	0228 0246			
115	SWIFT J1910.2-0546	287.60	-5.80	<0.5		LMXB	77	BHC;
				20.7 ± 1.9	$1223 \ 1231$			
	-	-	-		-			Continued on next page

4 Krivonos et al.

Table 2 – continued from previous page

Id	Name	Ra	Dec	$Flux_{100-150 \text{ keV}}$	Range	Type	Ref.*	Notes†
		deg	deg	$\rm erg \ cm^{-2} s^{-1}$	orbits			
116	X1908 + 075	287.70	7.60	1.7 ± 0.2		HMXB		
117	Aql X-1	287.81	0.58	2.0 ± 0.2		LMXB		burster;
118	SS 433	287.95	4.98	$0.7 \pm 0.2 \ (4.3)$		HMXB		BHC;
119	IGR J19140+0951	288.52	9.88	$0.9 \pm 0.2 \ (5.3)$		HMXB	78,79	=IGR J19140+098;
120	GRS 1915 + 105	288.80	10.95	27.6 ± 0.2		LMXB	80	BHC;
121	4U 1916-053	289.70	-5.24	$1.4 \pm 0.3 \ (4.9)$		LMXB		burster;
122	NGC 6814	295.67	-10.32	$2.2 \pm 0.4 \ (5.2)$		AGN		Sy1 $z=0.005214;$
123	KS 1947+300	297.40	30.21	< 0.5		HMXB		
_				$21.0 \pm 4.1 \ (5.2)$	$1365 \ 1365$			
124	Cyg X-1	299.59	35.20	303.4 ± 0.2		HMXB	81	BHC;
—				435.1 ± 0.3	$0158 \ 0938$			
125	Cygnus A	299.87	40.74	2.7 ± 0.2		AGN		Sy2 z=0.056146; = 3C 405.0;
126	EXO 2030+375	308.06	37.64	2.7 ± 0.2		HMXB		
-				25.6 ± 1.0	$0453 \ 0471$			
127	Cyg X-3	308.11	40.96	10.1 ± 0.2		HMXB	82	BHC;
128	IGR J21247+5058	321.16	50.98	3.0 ± 0.2		AGN	83,84	Sy1 $z=0.02;$
129	PKS 2149-306	327.98	-30.46	$2.5 \pm 0.4 \ (5.5)$		AGN	71	Blazar; FSRQ; z=2.344996;
130	NGC 7172	330.49	-31.88	$2.6 \pm 0.5 (5.7)$		AGN		Sy2 $z=0.008616;$
131	$4U \ 2206 + 543$	331.99	54.52	$1.5 \pm 0.3 \ (5.6)$		HMXB		
132	3C 454.3	343.49	16.15	5.0 ± 0.4		AGN	6	Blazar; $z=0.859;$
			•					

* (1) Eckert et al. (2004), (2a) Markwardt, Swank, & Strohmayer (2004), (2b) den Hartog et al. (2008a), (3) Reig & Roche (1999), (4) Lewin (1976), (5) Makino & GINGA Team (1990), (6) Donato, Sambruna, & Gliozzi (2005), (7) Piro et al. (1997), (8) Bassa et al. (2006), (9) van der Klis et al. (1985), (10) Milisavljevic et al. (2011), (11) Krimm et al. (2011), (12) Gelfand & Gaensler (2007), (13) Smith (1998), (14) Nakamura et al. (1989), (15) Parmar et al. (1986), (16) Hoffman, Lewin, & Doty (1977), (17) Molkov et al. (2003), (18) Chaty et al. (2006), (20) Masetti et al. (2006), (21) Hiemstra et al. (2011), (22) Bailyn et al. (1995), (23) Burenin et al. (2007), (24) Kalamkar et al. (2011), (25) Linares et al. (2009), (26) Falanga et al. (2009), (27) Samimi et al. (1979), (28) Oosterbroek et al. (1991), (29) Churazov et al. (2007), (30) Degenaar, Altamirano, & Wijnands (2012), (32) den Hartog, Kuiper, & Hermsen (2008b), (32b) Sztajno et al. (1985), (33) Kuulkers et al. (2004), (40) Malizia et al. (2010), (41) Bazzano et al. (1997), (42) Tomsick et al. (2009), (37) Grindlay et al. (2002), (44) Bassani et al. (2004), (45) Torres et al. (2004), (46) Syunyaev et al. (1991), (47) in't Zand et al. (1991), (48) Cocchi et al. (1999), (49) Vovk et al. (2012), (50) Pavlinsky, Grebenev, & Sunyaev (1994), (51) Revnivtsev et al. (2003), (52) Kalemci et al. (2006), (53) Grebenev, Molkov, & Sunyaev (2005), (54) Del Monte et al. (2008), (55) Altamirano et al. (2008), (56) Soldi et al. (2006), (57) Paizis et al. (2007), (58) Rodriguez et al. (2007), (59) Papitto et al. (2011), (61) Natalucci et al. (1999), (62) Morgan et al. (2005), (73) Nuestroev et al. (2014), (64) Sunyaev et al. (2007), (59) Papitto et al. (2011), (61) Freirgno Bozzo, & Belloni (2011), (61) Matalucci et al. (1983), (69) Nakahira et al. (2005), (73) Kuiper & Hermsen (2009), (74) Molkov et al. (2007), (75) Perrier et al. (2008), (76) Kaaret et al. (2006), (77) Reis et al. (2011), (72) Ferrigno et al. (2012), (73) Malizia et al. (2005), (73) Kuiper & Hermsen (2

[†] The spatial confusion with the source XXX is indicated as C{XXX}, where XXX is a name of the source has been mostly detected at energies below 100 keV. The measured flux of sources being in spatial confusion should be taken with the caution.

REFERENCES

- Altamirano D., et al., 2008, ATel, 1651, 1
- Bailyn C. D., et al., 1995, Natur, 374, 701
- Bassa C. G., Jonker P. G., in't Zand J. J. M., Verbunt F., 2006, A&A, 446, L17
- Bassani L., et al., 2004, AT
el, 232, 1
- Bazzano A., Cocchi M., Ubertini P., Heise J., in 't Zand J.,
- Muller J. M., 1997, IAUC, 6668, 2
- Bird A. J., et al., 2006, ApJ, 636, 765
- Burenin R., Revnivtsev M., Mescheryakov A., Bikmaev I., Pavlinsky M., Sunyaev R., 2007, ATel, 1270, 1
- Capitanio F., et al., 2006, ApJ, 643, 376
- Chaty S., Rahoui F., Foellmi C., Tomsick J. A., Rodriguez J., Walter R., 2008, A&A, 484, 783
- Churazov E., et al., 2007, A&A, 467, 529
- Cocchi M., Bazzano A., Natalucci L., Ubertini P., Heise J., Muller J. M., in 't Zand J. J. M., 1999, A&A, 346, L45
- Cocchi M., Bazzano A., Natalucci L., Ubertini P., Heise J., Muller J. M., Smith M. J. S., in't Zand J. J. M., 1999, ApL&C, 38, 133
- Cocchi M., Natalucci L., in 't Zand J., Heise J., Muller J. M., Celidonio G., di Ciolo L., 1999, IAUC, 7247, 3
- den Hartog P. R., Kuiper L., Hermsen W., Kaspi V. M., Dib R., Knödlseder J., Gavriil F. P., 2008a, A&A, 489, 245
- den Hartog P. R., Kuiper L., Hermsen W., 2008b, A&A, 489, 263
- Degenaar N., Altamirano D., Wijnands R., 2012, ATel, 4219, 1
- Del Monte E., et al., 2008, ATel, 1445, 1
- de Rosa A., Ubertini P., Campana R., Bazzano A., Dean A. J., Bassani L., 2009, MNRAS, 393, 527
- Djannati-Atai A., Oña-Wilhelmi E., Renaud M., et al., 2008, ICRC, 2, 863
- Donato D., Sambruna R. M., Gliozzi M., 2005, A&A, 433, 1163
- Eckert D., Walter R., Kretschmar P., Mas-Hesse M., Palumbo G. G. C., Roques J.-P., Ubertini P., Winkler C., 2004, ATel, 352, 1
- Falanga M., Cumming A., Bozzo E., Chenevez J., 2009, A&A, 496, 333
- Ferrigno C., Bozzo E., Belloni L. G. A. P. T. M., 2011, ATel, 3560, 1
- Ferrigno C., Bozzo E., Del Santo M., Capitanio F., 2012, A&A, 537, L7
- Fleischman J. R., 1985, A&A, 153, 106
- Gelfand J. D., Gaensler B. M., 2007, ApJ, 667, 1111
- Gianní, S., de Rosa, A., Bassani, L., et al. 2011, MNRAS, 411, 2137
- Grebenev S. A., Molkov S. V., Sunyaev R. A., 2005, ATel, 467, 1
- Grebenev S. A., Sunyaev R. A., 2004, ATel, 342, 1
- Greiner J., Cuby J. G., McCaughrean M. J., Castro-Tirado A. J., Mennickent R. E., 2001, A&A, 373, L37
- Grindlay J. E., et al., 1980, ApJ, 240, L121
- Hannikainen D. C., Rodriguez J., Pottschmidt K., 2003, IAUC, 8088, 4
- Herrero A., Kudritzki R. P., Gabler R., Vilchez J. M., Gabler A., 1995, A&A, 297, 556
- Hiemstra B., Méndez M., Done C., Díaz Trigo M., Altamirano D., Casella P., 2011, MNRAS, 411, 137

- Hoffman J. A., Lewin W. H. G., Doty J., 1977, ApJ, 217, L23
- in 't Zand J., Bazzano A., Cocchi M., Ubertini P., Muller J. M., Torroni V., 1998, IAUC, 6846, 2
- in 't Zand J. J. M., et al., 1991, AdSpR, 11, 187
- In't Zand J. J. M., Heise J., Muller J. M., Bazzano A., Cocchi M., Natalucci L., Ubertini P., 1999, NuPhS, 69, 228
- in't Zand J. J. M., et al., 2002, A&A, 389, L43
- Kaaret P., Morgan E. H., Vanderspek R., Tomsick J. A., 2006, ApJ, 638, 963
- Kahn S. M., Grindlay J. E., 1984, ApJ, 281, 826
- Kalamkar M., Homan J., Altamirano D., van der Klis M., Casella P., Linares M., 2011, ApJ, 731, L2
- Kalemci E., Tomsick J. A., Rothschild R. E., Pottschmidt K., Corbel S., Kaaret P., 2006, ApJ, 639, 340
- Krimm H. A., Tomsick J. A., Markwardt C. B., Brocksopp
- C., Grisé F., Kaaret P., Romano P., 2011, ApJ, 735, 104 Kuiper L., Hermsen W., 2009, A&A, 501, 1031
- Kuulkers E., Lutovinov A., Parmar A., Capitanio F.,
- Mowlavi N., Hermsen W., 2003, ATel, 149, 1
- Lewin W. H. G., 1976, IAUC, 2914, 3
- Lewin W. H. G., Ricker G. R., McClintock J. E., 1971, ApJ, 169, L17
- Linares M., Watts A. L., Wijnands R., Soleri P., Degenaar N., Curran P. A., Starling R. L. C., van der Klis M., 2009, MNRAS, 392, L11
- Lutovinov A., Cadolle Bel M., Belanger G., Goldwurm A., Budtz-Jorgensen C., Mowlavi N., Paul J., Orr A., 2004, ATel, 328, 1
- Lutovinov A. A., Revnivtsev M. G., 2003, AstL, 29, 719
- Makino F., GINGA Team, 1990, IAUC, 5139, 1
- Malizia A., Bassani L., Sguera V., Stephen J. B., Bazzano A., Fiocchi M., Bird A. J., 2010, MNRAS, 408, 975
- Malizia A., et al., 2005, ApJ, 630, L157
- Markwardt C. B., Swank J. H., Strohmayer T. E., 2004, ATel, 353, 1
- Masetti N., Palazzi E., Bassani L., Malizia A., Stephen J. B., 2004, A&A, 426, L41
- Masetti N., et al., 2006, A&A, 449, 1139
- Milisavljevic D., Fesen R. A., Parrent J. T., Thorstensen J. R., 2011, ATel, 3146, 1
- Morgan, E., Swank, J., Markwardt, C., & Gehrels, N. 2005, The Astronomer's Telegram, 550, 1
- Molkov S., Mowlavi N., Goldwurm A., Strong A., Lund N., Paul J., Oosterbroek T., 2003, ATel, 176, 1
- Molkov S. V., Cherepashchuk A. M., Lutovinov A. A., Revnivtsev M. G., Postnov K. A., Sunyaev R. A., 2004, AstL, 30, 534
- Murakami T., et al., 1983, PASJ, 35, 531
- Nakahira S., et al., 2013, ATel, 5474, 1
- Nakamura N., Dotani T., Inoue H., Mitsuda K., Tanaka Y., Matsuoka M., 1989, PASJ, 41, 617
- Natalucci L., Cornelisse R., Bazzano A., Cocchi M., Ubertini P., Heise J., in 't Zand J. J. M., Kuulkers E., 1999, ApJ, 523, L45
- Neustroev, V. V., Veledina, A., Poutanen, J., et al. 2014, MNRAS, 445, 2424
- Oosterbroek T., Penninx W., van der Klis M., van Paradijs J., Lewin W. H. G., 1991, A&A, 250, 389
- Paizis A., et al., 2007, ApJ, 657, L109
- Papitto A., Ferrigno C., Bozzo E., Gibaud L., Burderi L.,

- di Salvo T., Riggio A., 2011, ATel, 3556, 1
- Parmar A. N., White N. E., Giommi P., Gottwald M., 1986, ApJ, 308, 199
- Pavlinsky M. N., Grebenev S. A., Sunyaev R. A., 1994, ApJ, 425, 110
- Piro L., et al., 1997, IAUC, 6538, 2
- Reig P., Roche P., 1999, MNRAS, 306, 100
- Reis R. C., Reynolds M. T., Miller J. M., Walton D. J.,
- Maitra D., King A., Degenaar N., 2013, ApJ, 778, 155
- Revnivtsev M., Chernyakova M., Capitanio F., Westergaard N. J., Shoenfelder V., Gehrels N., Winkler C., 2003, ATel, 132, 1
- Rodriguez J., Cadolle Bel M., Tomsick J. A., Corbel S., Brocksopp C., Paizis A., Shaw S. E., Bodaghee A., 2007, ApJ, 655, L97
- Samimi J., et al., 1979, Natur, 278, 434
- Schmutz W., Geballe T. R., Schild H., 1996, A&A, 311, L25
- Smith D. A., 1998, IAUC, 7008, 1
- Soldi S., et al., 2006, ATel, 885, 1
- Sunyaev R., et al., 1991, A&A, 247, L29
- Syunyaev R., et al., 1991, SvAL, 17, 54
- Sztajno M., Langmeier A., Frank J., Trumper J., Hasinger G., Pietsch W., van Paradijs J., 1985, IAUC, 4111, 1
- Terrier R., Mattana F., Djannati-Atai A., Marandon V., Renaud M., Dubois F., 2008, AIPC, 1085, 312
- Tomsick J. A., Chaty S., Rodriguez J., Walter R., Kaaret P., 2009, ApJ, 701, 811
- Torrejón J. M., Negueruela I., Smith D. M., Harrison T. E., 2010, A&A, 510, A61
- Torres M. A. P., Garcia M. R., McClintock J. E., Steeghs D., Miller J., Callanan P. J., Zhao P., Berlind P., 2004, ATel, 264, 1
- Ubertini P., Bazzano A., Cocchi M., Natalucci L., Heise J., Muller J. M., in 't Zand J. J. M., 1999, ApJ, 514, L27
- van der Klis M., Jansen F., van Paradijs J., Stollman G., 1985, SSRv, 40, 287
- Vovk I., et al., 2012, ATel, 4381, 1
- Walter R., et al., 2004, ATel, 229, 1