

Моделирование теплового рентгеновского спектра радиопульсара PSR B0656+14

B. Сулейманов, В. Дорошенко, А.Ю. Потехин, А. Schwope, A. Pires, J. Kurpas, K. Werner, A. Santangelo

По результатам наблюдений пульсара телескопом eROSITA /CPГ (arXiv:2106.14533v1, PI A. Schwope, CPV phase, во время полета к точке L2)

Один из самых ярких в рентгеновском диапазоне пульсаров. Период вращения и его производная P = 0.385 s, $\dot{P} = 5.5 \times 10^{-14}$ Характерный возраст $\tau = P/2\dot{P} \approx 1.1 \times 10^5$ лет Характеристическое магнитное поле (экватор) $B \approx 4.7 \times 10^{12}$ Гс Расстояние радиоастрометрическое $d = 288^{+23}_{-27}$ Пк Хорошо изучен (см. Zharikov et al. 2021 и ссылки там)

Проведено моделирование тепловой компоненты фазово-усредненного спектра (наблюдения 19.10.2019 100 ks eROSITA и 71.2 ks XMM-Newton + архивные наблюдения XMM и NuSTAR)

Изображение пульсара, полученного eROSITA. Белым прямоугольником показано поле, наблюдавшееся обсерваторией XMM-Newton.

Одновременный фит спектров, полученных eROSITA (черные точки), XMM-Newton (малиновые точки), и NuSTAR (голубые точки) феноменологической моделью: два черных тела, степенной спектр и линия на E=0.59 keV

Ω

В

Геометрия модели.

Были исследованы три модели излучающей поверхности нейтронной звезды (М = 1.4 М_{sun}, R= 12 km):

1) Полностью покрыта полубесконечной водородной атмосферой с дипольным магнитным полем по поверхности и соответствующим температурным распределением (модель Atm). Необходимо слишком маленькое расстояние в 60 пк (также показано ранее в работе Arumugasamy et al. 2018). Линия вставляется руками.

2) Излучает металлическая конденсированная поверхность (модель CS). Необходимо сильное поле и сильная тороидальная компонента поля чтобы сделать температурное распределение с резкими максимумами вблизи полюсов. Линия руками.

3) Излучает металлическая конденсированная поверхность, полярные шапки покрыты геометрически тонкой водородной атмосферой ($\Sigma \approx 10 \ g \ cm^{-2}$, модель CS + Atm). Поле дипольное, но напряженностью на полюсах ~ 10^{14} Гс. Тогда абсорбция на 0 59 каВ есть протонная циклотронная.

╄_{╋╋}┿╋┿┿╸┥

=

Наилучшие фиты фазово-усредненного спектра рассмотренными тремя моделями. Параметры моделей показаны в Таблице

Parameter	Atm	CS	CS + Atm
$N_{\rm H} \ (10^{20} {\rm cm}^{-2})$	$3.52^{+0.1}_{-0.05}$	$1.04^{+0.03}_{-0.04}$	$1.94^{+0.04}_{-0.03}$
<i>D</i> (pc)	$59.6^{+5.9}_{-3.4}$	288^{a}	240±12
Г	1.98 ^a	1.98^{a}	1.98 ^a
$K_{\Gamma}(10^{-5})$	$4.71^{+0.17}_{-0.2}$	$4.65_{-0.21}^{+0.18}$	3.32 ± 0.17
$E_{\rm edge}~({\rm keV})$	0.252 ± 0.002	$0.252^{+0.006}_{-0.010}$	0.268 ± 0.003
$ au_{ m edge}$	$0.61^{+0.04}_{-0.02}$	0.07 ± 0.02	0.17 ± 0.02
E_{Line} (keV)	$0.589^{+0.006}_{-0.002}$	$0.537^{+0.005}_{-0.006}$	-
$\sigma_{\rm Line}~({\rm keV})$	0.075 ± 0.005	$0.048^{+0.003}_{-0.004}$	-
$ au_{ m Line}$	0.038 ± 0.003	$0.044^{+0.004}_{-0.006}$	-
$T_{\rm p}~({\rm MK})$	0.355 ± 0.005	$1.853^{+0.01}_{-0.006}$	1.047 ± 0.007
$B_{\rm p} (10^{13} {\rm G})$	1^a	$25.6^{+0.3}_{-0.4}$	10.6 ^{<i>a</i>}
θ_{R}	$82^{\circ}_{-4^{\circ}}^{+0.7^{\circ}}$	$80^{\circ} \pm 2^{\circ}$	$90^{\circ} \pm 0^{\circ}$
a _T	0.25^{a}	48^{+2}_{-1}	0.25^{a}
$T_{\rm sp}$ (MK)	-	-	1.53 ± 0.01
$B_{\rm sp} (10^{13} {\rm G})$	-	-	10.6
$R_{\rm sp}$ (km)	-	-	$0.67^{+0.06}_{-0.06}$
$\chi^2_{\rm d.o.f.}$	1.34	1.40	1.26

(а) - Фиксированные при фитировании параметры