

Межзвёздное вещество в галактиках ранней Вселенной: молекулярный водород и нейтральный углерод

С.А. Балашев¹, П. Нотердам², Д. Крогагер², А. Раджан², В.В. Клименко¹, А.В. Иванчик¹, Д.А. Варшалович¹, П. Петижан², Р. Шриананд³, С. Леду⁴

¹ Ioffe Institute, St Petersburg
 ² Institut d'Astrophysique de Paris
 ³ UICAA, Pune, India
 ⁴ ESO, Chile

Звездообразование и Н₂

В локальной Вселенной хорошо известно, что

Звёзды, в основном, образуются в молекулярных облаках

ightarrow $\Sigma_{
m SFR}$ ightarrow $\Sigma_{
m HI}$, но $\Sigma_{
m SFR}$ \sim $\Sigma_{
m H_2}$

(Wong & Blitz 2002, Kennicutt et al. 2007, Bigiel et al. 2008, Schruba et al. 2011,)

NGC 6946 from Bigiel et al. 2008

Звездообразование и H_2

Является ли H₂ необходимым для процесса звездообразования?

(Krumholz 2011, Glover & Clark 2012, ...)

3

➡ H₂ не является главным хладагентом холодной M3C, охлаждение M3C в основном за счет металлов

VS

➡ H₂ является ключевым элементом для образования молекул, которые охлаждают МЗС до более низких температур, чем металлы

Наблюдательно в локальной Вселенной:

- 1. Н₂ является трейсером холодной фазы МЗВ
- 2. Условия сопутствующие звездообразованию благоприятствуют образованию H2 $[X/H] \sim A_V \sim H_2$

Звездообразование и Н₂

Как протекает процесс звездообразования в условиях отличных от условий в нормальных галактиках локальной Вселенной?

Z=O

Dwarf galaxy

Z>0

Звездообразование и H₂

Как протекает процесс звездообразования в условиях отличных от условий в нормальных галактиках локальной Вселенной?

Z=O

Dwarf galaxy

Z>0

Галактики z~2

Поток излучения от галактик сильно падает на z>2

Поэтому в эмиссии изучаются в основном только яркие галактики из популяции

Галактики z~2

Такой проблемы нет для изучения галактик в абсорбционных спектрах квазаров

7

Спектроскопия квазаров

Квазары – активные ядра галактик.

Современные телескопы позволяют детектировать квазары вплоть до z ~ 7

Спектроскопия квазаров

Анализ абсорбционных линий в спектрах квазаров – инструмент для изучения межгалактического и межзвездного вещества во Вселенной

Спектроскопия квазаров

Большинство линий поглощения в спектре квазара: **Лайман-альфа лес** – линии Lya, от межгалактического вещества (z < z_{QSO})

Спектроскопия квазаров. DLA системы

Примерно в ~15% спектрах квазаров может появиться насыщенная линия Lya:

или **Damped Lyman Alpha (DLA)** система Принятое определение DLA: logN(HI) > 20.3, N – лучевая концентрация, в см⁻²

Спектроскопия квазаров. DLA системы

Помимо, линии Lya в DLA системах обычно детектируется большое количество ассоциированных линий тяжёлых элементов (металлов) в различной степени ионизации: OI, SiII, CII, FeII, AlIII, SiIV, CIV, ...

Спектроскопия квазаров. DLA системы

В <10% DLA систем детектируются ассоциированные линии поглощения молекул H₂, HD и CO.

Эти молекулы относятся к холодной и плотной фазе межзвездного вещества

DLA системы – галактики в ранней Вселенной

Считается, что **DLA** – это галактики или ближайшие окрестности галактик:

- 1. logN(HI) > 20.3 аналог диска спиральных Галактик
- 2. Главные резервуары атомарного водорода. $\Omega_{\rm HI}(z)$
- 3. Линии тяжелых элементов:

ЕДКО, <10%

- Теплая нейтральная фаза МЗВ
- Металличность 1 при z
- Деплеция металлов на пыли

Прямая идентификация (Lya, Ha, OII, OIII, ...). Звездообразование

DLA системы. Холодная фаза МЗВ

5. Холодная фаза МЗВ:

<10%

PEAKO,

- Металлы низкой степени ионизации: CI, CII, SiI, FeI, MgI
 - Молекулы **H**₂, **HD**, **CO**
- Пыль (и 2175Å) косвенный индикатор

• Объясняется соотношением сечений атомарного и молекулярного газа:

DLA системы. H_2

- УФ линии поглощения H_2 : ×(1 + z) \Longrightarrow Оптический телескоп $z \gtrsim 2$
- Для анализа нужны спектры высокого разрешения:

 Большинство DLA с H₂ найдено слепым поиском (~1985-2010 гг.), что крайне не эффективно с точки зрения наблюдений на крупных оптических телескопах

DLA системы. H₂

 Большинство DLA с H₂ найдено слепым поиском (~1985-2010 гг.), что крайне не эффективно с точки зрения наблюдений на крупных оптических телескопах

Sloan Digital Sky Survey

SDSS – крупнейший спектроскопический обзор:

~ 500,000 квазаров

$$z_{em} > 2.0$$

~ 350,000

```
(Noterdaeme2009+, 2012+ и другие)
```

```
~ 40,000 DLAs
```


Покрытие DR12 BOSS

Sloan Digital Sky Survey

~ 500,000 квазаров

$$z_{em} > 2.0$$

~ 350,000

(Noterdaeme2009+, 2012+ и другие)

```
~ 40,000 DLAs
```


Покрытие DR12 BOSS

Однако, изучение холодной фазы M3B (H₂, HD, CO, CI) сильно затруднено:

- 1. Низкий сигнал к шуму (S/N ~ 3-4)
- 2. Спектральное разрешение SDSS ($R \sim 2000$)
- 3. Цу-а лес

Коспозитный спектр DLA

Мы идентифицировали линии H₂ в композитном спектре DLA систем из SDSS

20

DLA системы. H_2

Это позволило определить, что

3.5 ± 1.0 % DLA систем с содержат H₂ (Balashev & Noterdaeme 2018)

- ➡ Обзор VLT : < 10% (8 из 77 при logN(H₂) > 18, Noterdaeme2008+)
- ⇒ Обзор Magellan < 6% (1 из 55 при $\log N(H_2) > 17$, Jorgenson2014+)
- ⇒ Обзор SDSS: < 7% (для $\log N(H_2) > 19.5$, Balashev2014+)

Т.е. сечение диффузного молекулярного газа ~30 меньше сечения атомарного

1. Линии CI являются трейсером H₂ (Noterdaeme2009+, 2018+)

$$[X/H] \sim 0$$
 CO, 2175Å,... z<2

2. Прямая идентификация H₂ (Balashev2014+, 2017+)

"Репрезентативная" выборка H₂ в DLA системах

3. **To HI: ESDLA** – DLA c logN > 21.7 (Noterdaeme2015+, Ranjan2018+)

Малый прицельный параметр

[X/H] < -1

Идентификация DLA систем (Prochaska2009+, Noterdame2012+, Parks2018+)

1. Прямая идентификация H₂ (Balashev2014+, 2017+)

2. Линии СІ являются трейсером H₂ (Noterdaeme2009+, 2018+)

3. Extremely Saturated DLA $- \log N > 21.7$ (Noterdaeme2015+)

SDSS. Преселекция H₂

Extremely Saturated DLA $- \log N > 21.7$ (Noterdaeme2015+) 3.

Малый прицельный параметр и [X/H] < -1

J1513+0352. Lya эмиссия от DLA (Ranjan2018+)

29

J1513+0352. Lya эмиссия от DLA (Ranjan2018+)

Прицельный параметр: b < 2 kpc

Скорость звездообразования: SFR $> 0.02~{\rm M}_{\rm sun}~{\rm yr}^{\text{-}1}$

J1513+0352. Конверсия HI/H₂

На основе теоретической работы Sternberg2014+ можно оценить выражение для лучевой концентрации на которой происходить конверсия HI/H₂:

$$\Sigma_{\rm H\,I} = \frac{6.71}{\tilde{\sigma}_{\rm g}} \ln\left(\frac{\alpha \rm G}{3.2} + 1\right) \rm M_{\odot} pc^{-2}$$

$$\alpha G = 0.59 I_{UV} \left(\frac{100 \,\mathrm{cm}^{-3}}{n_{\mathrm{H}}} \right) \left(\frac{9.9}{1 + 8.9 \tilde{\sigma}_g} \right)^{0.37}$$

Используя измерения:

- распространённости пыли (σ_g)
- населённость уровней СІ (n_H и I_{UV})

Можно оценить параметр *аG*

J1442+4055. DLA система в грав. линз. квазаре (Krogager2018+)

J1442+4055 — квазар с $z_{\rm QSO}$ =2.59, найденный в SDSS, гравитационно-линзированный галактикой на $z_{\rm GAL}$ ~0.35:

Спектры обоих изображений J1442+4055 содержат DLA систему (z_{DLA} =1.95), содержащую H₂ и CI, т.е. холодную фазу M3B удалённой галактики.

J1442+4055. Холодная фаза МЗВ.

(Krogager2018+)

J1442+4055. Холодная фаза МЗВ.

(Krogager2018+)

J1442+4055. Фактор заполнения для холодного МЗВ

Заключение

- 1. Холодная фаза межзвёздного вещества на больших красных смещениях может эффективно изучаться с помощью **DLA систем, содержащих молекулярный водород**
- 2. **SDSS** краеугольный камень для решения такой задачи
- 3. На основе композитного спектра DLA систем с красными смещениями z>3, частота идентификации H_2 в DLA системах равна **3**. **5** ± **1**. **0** %
- 4. Относительная населенность уровней атомов и молекул даёт оценку на физические условия в МЗВ галактик ранней Вселенной.
- 5. Несколько примеров детального изучения **M3B на z>2**:
 - "СО-тёмный" газ
 - излучение в линии Lyα от DLA системы
 - CI/H₂ в гравитац.-линзированном квазаре

Структура уровней H₂:

Уровни тонкой структуры CI:

Для оценки локальных физических условий в среде можно использовать относительную населённость уровней атомов и молекул.

Населённость уровней СІ определяется:

Населённость уровней СІ определяется:

1. Спонтанные переходы

Населённость уровней СІ определяется:

- 1. Спонтанные переходы
- 2. Столкновения

плотность, температура

Населённость уровней СІ определяется:

- 1. Спонтанные переходы
- 2. Столкновения

плотность, температура

3. Прямые радиативные переходы

CMB

- 1. Спонтанные переходы
- 2. Столкновения

плотность, температура

3. Прямые радиативные переходы

CMB

4. Радиативная накачка

УФ фон

уровни	температура	плотность	фон УФ	СМВ
Тонкая структура Cl	+/-	+	+/-	?
Вращательные Н ₂	+	+/-	+/-	
Вращательные HD		+		
Вращательные СО	+/-	+/-		+

Кинетическая температура. Т₀₁

Кинетическая температура в МЗВ может быть оценена на основе относительной населенности J=1/J=0 вращательных уровней H₂ (орто-пара водорода)

Структура уровней H₂:

Кинетическая температура. T₀₁

Плотность. Уровни тонкой структуры CI

Уровни тонкой структуры СІ дают оценку на плотность газа

Плотность. Уровни тонкой структуры CI

Уровни тонкой структуры СІ дают оценку на плотность газа

Плотность и температура. z>2

Совместная оценка на плотность и температуру в DLA с z>2

Звездообразование

Известно, что звездообразование связано с межзвёздным газом (МЗГ)

Для усреднённых по диску галактики (т.е. ~кпк разрешением) величин установлено соотношение Кенниката-Шмидта

$$\Sigma_{\rm SFR} \sim \Sigma_{\rm gas}^{\alpha}, \quad \alpha \approx -1.4$$

Преселекция по HI. Extremely saturated DLA

ESDLA – сверхнасыщенные DLA системы с $\log N(HI) > 21.7$:

Наблюдения указывают, ESDLA системы скорее всего относятся к галактикам с малым прицельным параметром, **< неск. кпк** (Noterdaeme2012+, Noterdaeme2014+, Kulkarni2012+)

>50% ESDLA содержит H₂

Sloan Digital Sky Survey

Quasar spectrum with H2 absorption system.

Конверсия HI/H₂

При некотором значении лучевой концентрации N(HI): HI → H₂

Конверсия HI/H_2 . z=0

При некотором значении лучевой концентрации N(HI): $HI \rightarrow H_2$

Значение N(H) при котором конверсия зависит от [X/H], фона УФ, ...

Конверсия HI/H_2 . z>0

В DLA системах z>2 пока не идентифицируется конверсия HI/H₂

Скорее всего конверсия происходит при $\log N > 22$ (в силу [X/H], фона УФ)

56

DLA системы. $\Omega_{\rm HI}$

DLA системы – главные резервуары атомарного газа

DLA системы. Металличность

Металличность эволюционирует с z

Метод прямого поиска H₂. J0843+0221

Balashev et al. 2017

J0843+0221. Х_{со} фактор

С учетом верхнего предела на logN(CO) получена верхний предел на X_{CO} фактора в газе низкой металличности (~3% солнечной):

60

Метод поиска по линиям нейтрального углерода

- СІ является хорошим трейсером H₂ (холодной фазы M3B)
- Наиболее выраженные линии CI в УФ ~1656Å, ~1560Å, ~1328Å < Ly α
- Насыщенные линий CI могут быть детектированы в SDSS (P. Noterdaeme)

Fig. 1. SDSS spectrum of the $z_{em} = 1.94$ QSO J0815+2640.

J0000+0048. CI

Fig. 6. Fit to the neutral carbon lines (UVES data)

Стек спектр DLA

SNR

Lyа лес

Стек спектр DLA

Мы идентифицировали лини
и $\rm H_2$ в Stack спектре DLA систем из SDSS DR12

Простое приближения для фитирования Stack спектра:

$$S(\lambda) = 1 - \mathbf{r} \cdot \left(1 - \int_{N_{\text{low}}}^{N_{\text{up}}} dN \int d\lambda' R(\lambda - \lambda') e^{-\tau_{\text{H}_2}(N,\lambda')} f_{\text{H}_2}(N) \right)$$
$$f_{\text{H}_2}(N) \sim N^{\beta}$$

Стек спектры DLA

Стек спектры DLA. $f_{H2}(N)$

Мы получили оценку на функцию распределения f(N_{H2}, X)= $d^2n/dXdN$ на z>3

DLA системы. Почему мало H₂?

 $z\sim 2$ [X/H] ~ -1 ... -2

пик звездообразования: SFR $\sim 10~{\rm SFR}_{\rm local}$

Конверсия HI/H_2 . z=0

При некотором значении лучевой концентрации N(HI), H2 самоэкранируется от диссоциирующего УФ излучения: HI \to H2 $_{68}$

Конверсия HI/H_2 . z~2

За счет меньшей металличности и большего фона УФ сечение диффузного H₂ в галактиках на z~2 меньше, чем в локальной Вселенной.

Стек спектры DLA. Конверсия HI/H2

Стек спектры DLA. Конверсия HI/H2

Частота детекции H2 в ESDLA системах 35 ± 13 %, что ~10 выше чем в DLA.

