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Motivation for the study: importance of the BL
“Atoll” and “Z” sources

Variable contribution from the BL

Revnivtsev et al. (2003, 2006)



Motivation for the study: importance of the BL
“Atoll” and “Z” sources

Multiple QPOs at low (Hz to hHzs) and
high (∼ 1kHz) frequencies

Sco X-1; van der Klis (any year,
especially 2000)



Motivation for the study: kHz QPOs and correlation
time scales

kHzQPO frequency as a function of flux:

van der Klis (2006)



Motivation summary

I BL is visible
I BL is variable
I BL retains its structure (fkHzQPO – flux relation) on time scales

minutes to hours, much longer than the scales of the inner disc
or local thermal time scales

I ⇒spreading layer weakly coupled with both the disc and the NS



Spreading layer approximation
Spreading layer:

Inogamov& Sunyaev (1999, 2010),
Suleimanov & Poutanen (2006)
Need to set mixing/friction by hand
or go to 2D/3D.

But:
I surface friction should be

small
I BC or matter source at the

equator?



BL simulations

Rϕ

Belyaev, Rafikov, and Stone (2012) ;
Belyaev and Quataert (2018)
Velocity discontinuity⇒shear instability.
Inefficient in BL-disk angular momentum
exchange.

Rθ

Philippov et al.(2016)



2D spectral approach

Simulation setup:
I Decomposition into spherical

harmonics (shtns library for
python)

I pseudo-spectral approach
with filtering

I https://github.com/
pabolmasov/SLayer

I goals: trace angular
momentum transfer (shear
instability!) and variability
patterns

System of equations:
continuity
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https://github.com/pabolmasov/SLayer
https://github.com/pabolmasov/SLayer


Sub-sonic case

I KH stability depends
on velocity gradients

I sonic modes
I heating where different

velocities are mixed
⇒sometimes RT
unstable

I rapid rotation near the
SL boundary



Sub-sonic case

I KH stability depends
on velocity gradients

I sonic modes
I heating where different

velocities are mixed
⇒sometimes RT
unstable

I rapid rotation near the
SL boundary

time-latitude diagram for angular
frequency



Heating instability (setup-dependent)

super-sonic case, Keplerian
rotation, Ṁ = 10−8 M� yr−1

time-latitude diagram for
surface density



Shear instability and oblique waves

Enhanced accretion
solution (Σ0 = 108g cm−2,
Ṁ = 10−3 M� yr−1)
Reynolds’s stress:

velocity correlation, mean
values vϕvθ, and c2

s



Power density spectra



1D-model

(net angular momentum
conservation is still an option. . . )
Angular momentum transfer:

Ṁj = 4πR2 sin2 θRθϕ + Ṁj0, (5)

Energy balance:

cgeff

κ
(1− β) = Rθϕ

∂Ω

∂θ
. (6)

⇒

∂ω

∂θ
=

(1− β) sin2 θ

ṁ
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.

(7)



Conclusions

I spectral simulations in a
super-sonic regime are
challenging but possible and
provide a useful framework for
further applications

I shear supersonic instabilities
allow angular momentum
transfer inside the SL
(Reynolds’s stress)

I non-linear evolution leads to
quasiperiodics

I why 108 g cm−2?


