Моделирование измерения космологических параметров по угловым спектрам мощности квазаров и скоплений галактик в обзоре неба СРГ/еРОЗИТА

Сергей Быков (КФУ, МПА), Марат Гильфанов (ИКИ, МПА)

Астрофизика высоких энергий сегодня и завтра 2021 (НЕА-2021), 24 декабря 2021

План

- Крупномасштабная структура Вселенной как космологическая проба
- Популяции АЯГ и скоплений в обзоре еРОЗИТА
- еРОЗИТА: Барионные акустические осцилляции
- еРОЗИТА: Космологические параметры из спектров мощности
- Выводы

Крупномасштабная структура Вселенной

- Галактики и скопления живут в Гало темной материи
- Распределение темной материи/гало неравномерно и зависит от первичных флуктуаций плотности и от истории роста структур

• $P_{gal}(k, z) = b^2(k, z)P_{CDM}(k, z)$ - спектр мощности флуктуаций галактик

Симуляция Millennium Springel et al. (2005)

Крупномасштабная структура Вселенной

• $P_{\text{gal}}(k,z) \rightarrow \mathbf{C}_{\ell}(z)$ - спектр мощности угловых флуктуаций

•Обзоры галактик (galaxy survey) крупномасштабное распределение материи

Текущие: SDSS,...

Будущие: Euclid, ...

Spectrun Power Angular

Крупномасштабная структура Вселенной "Рецепт" спектра мощности \mathbf{C}_l

- Повторить в диапазонах по zi!
- . Расчет ошибок: $\mathbf{C}_{\ell}(z_i) \circledast \frac{dN}{dz}(z_i) \circledast f_{\mathrm{sky}} \rightarrow$ $\rightarrow \operatorname{Cov}(\mathbf{C}_{\ell}(z_i, z_j)\mathbf{C}_{\ell}(z_m, z_n)) = \frac{1}{(2\ell+1)f_{\mathrm{sky}}} \left(\mathbf{C}_{\ell}(z_i, z_m)\mathbf{C}_{\ell}(z_j, z_n) + \mathbf{C}_{\ell}(z_i, z_n)\mathbf{C}_{\ell}(z_j, z_m)\right)$

Темная материя • Расчет спектра: $P(k, z_i; \Omega_m, \Omega_b, h, n_s, \sigma_8) \circledast \frac{dN(z)_{bin}}{dz} \circledast b(z) \to \mathbf{C}_{\ell}(z_i)$

СРГ/еРОЗИТА

Крупномасштабная структура в рентгене

Отслеживаем темную материю с помощью...

~3 млн АЯГ

~100 тыс. скоплений

Рентген эффективен для поиска АЯГ и Скоплений

- Функция масс скоплений (Pillepich+ 2012, 2018)
- Функция светимости АЯГ- рост СМЧД (Kolodzig, Gilfanov, Sunyaev+ 2013a)
- •БАО в распределении АЯГ (Huetsi, Gilfanov, Kolodzig +2014; Kolodzig, Gilfanov, Huetsi, Sunyaev 2013b)

Pillepich+ 2012

Kolodzig, Gilfanov, Huetsi, Sunyaev 2013b

Модель, расчеты и прогноз

Популяция АЯГ

 $\phi(L,z) \rightarrow \frac{dN(z)}{dz}$

 $\phi(L,z)$ Рентгеновская функция светимости АЯГ (0.5-2 кэВ, Hasinger+ 2005)

Скученность АЯГ соответствует гало темной материи (Allevato+ 2011)

 $M_{\rm DMH} = 2 \ 10^{13} \ h^{-1} M_{\odot}$

S - предельный поток 10^{-14} erg s⁻¹cm⁻²

Внегалактическое небо |b|>20, I<180, <u>33% неба ($f_{skv} = 0.33$)</u>, 13.5k кв. Градуса:

Количество АЯГ: ~**1.25 млн (90 шт./градус²)**

Популяция скоплений

$$n(M_{500c}, z) \rightarrow rac{dN(z)}{dz}$$

 $n(M_{500c}, z)$ -Симуляции темной материи (Tinker 2008)
 Φ ункция масс гало темной материи
-вычисляется в предположении о связи между
массой скопления и его светимостью/
температурой (Вихлинин+ 2009)

$$b_{\rm eff}(z) = \frac{\int_{M_{\rm min}(S,z)}^{10^{16}} b(M,z) n(M,z) dM}{dN/dz}$$

S - предельный поток $4.4 \ 10^{-14} \text{ erg s}^{-1} \text{cm}^{-2}$

N

Популяция скоплений: распределение по массам

- Внегалактическое небо ($f_{sky} = 0.33$), 13.5k кв. Градуса:
- ~47300 ($M_{500c} > 5 \, 10^{13} \, h^{-1} M_{\odot}$) ~200 ($M_{500c} > 5 \, 10^{14} \, h^{-1} M_{\odot}$)

Сравнение с наблюдениям АСТ и SPT Bleem et al. (2019), Hilton et al. (2020) Без коррекции на неполноту

I	. =
	13
	1
	l H
~U.ZD/	
*	
	H
	H
	Н
	4
	_
	-
	-
	-
	7
	_
	_
	Ξ
	Ξ
	-
	-
	-
	_
	-
	F
	٦
	Ξ
	-
	-
	-
	_
	_

Популяции АЯГ и скоплений: фотометрические красные смещения

"расплывание" диапазона по z

$\sigma_0: \sigma(z) = \sigma_0(1+z)$ - разброс ошибок красных смещений

 f_{fail} : доля катастрофических ошибок

Ширина диапазона по z: $\Delta z_i = \sigma_0(1 + z_i)$

Наша выборка: 0.5<z<2.5 (АЯГ); 0.1<z<0.8 (Скопления)

Figure 3: SDSS + Pan-STARRS + DESI LIS + WISE model photo-z point estimates for Stripe82X sample. Color of point corresponds to zConf. The darker area on the plot outlines catastrophic outliers region.

11

of 1.0 - 0.8 - 0.6 - 0.4 - 0.2

Барионные акустические осцилляции (прогноз)

Предсказание: Сюняев и Зельдович (1970) Наблюдения в распределении галактик: Huetsi 2004, Eisenstein+ 2005 и позднее

Барионные акустические осцилляции

Huetsi, Gilfanov, Kolodzig +2014

$$S/N = \sqrt{(\mathbf{C}_{\ell} - \mathbf{C}_{\ell}^{\mathrm{NW}})^{T} \mathrm{Cov}^{-1} (\mathbf{C}_{\ell} - \mathbf{C}_{\ell}^{\mathrm{NW}})}$$

l

Барионные акустические осцилляции

0.5<z<2.5 (АЯГ); 0.1<z<0.8 (Скопления)

Космологические параметры (прогноз)

Космологические параметры: матрицы Фишера

Космологические параметры

Эллипсы ошибок (Матрицы Фишера)

eRASS8, 33% неба

 $\sigma_0 = 0.005$ и 0.03 (скопления и АЯГ)

АЯГ "мощнее" скоплений, но из-за частичного снятия вырождения параметров, комбинация со скоплениями увеличивает FoM в ~ 3.7 раза

+ еще много конфигураций!

- Зависимость от площади (все небо, SDSS 9k deg², …)
- Зависимость от качества photo-z
- Зависимость от чувствительности (eRASS4,6,8...)
- Информация из других экспериментов (Planck prior, ...)

Космологические параметры

0.5<z<2.5 (АЯГ); 0.1<z<0.8 (Скопления)

Космологические параметры в контексте

	$\delta\Omega_m$	$\delta\Omega_b$	δh	δn_s	$\delta\sigma_8$
eROSITA, 33% sky	0.3±0.023	0.05±0.02	0.7±0.243	0.96±0.154	0.8±0.007
eROSITA, 33% sky Planck prior: n_s, Ω_b	0.017	0.001(prior)	0.047	0.004(prior)	0.004
Planck 2018 CMB +lensing	0.0073	0.0010	0.006	0.0042	0.006
SDSS BOSS Loureiro+ 2019	0.033	0.009	0.07	0.045	
CMB (planck) + LSS (BOSS) Doux+2018	0.011		0.0087	0.005	0.010
eROSITA Cluster Counts 65% sky (Pillepich + 2012)	0.0031	0.0492	0.364	0.143	0.003

 $\sigma_0 = 0.005$ и 0.03 (скопления и АЯГ)

0.5<z<2.5 (АЯГ); 0.1<z<0.8 (скопления)

Выводы

еРОЗИТА предоставит выборку из ~1.25 млн АЯГ и ~50000 скоплений на "RU" половине внегалактического неба

Точность определения космологических параметров/БАО главным образом определяется точностью

- и $\sim 3\sigma$ соответственно
- ограничения на стандартную космологическую модель

Моделирование измерения космологических параметров по угловым спектрам мощности квазаров и скоплений галактик в обзоре неба СРГ/еРОЗИТА

Быков, Гильфанов

фотометрических оценок красных смещений σ_0 и в меньшей мере - долей катастрофических ошибок $f_{
m fail}$

При условии наличия фотометрических оценок красных смещений ($\sigma_0 = 0.03$ и 0.005 соответственно):

Выборка даст возможность зарегистрировать БАО в распределении АЯГ и Скоплений со значимостями $\, \sim 4 \sigma$

Ошибки на космологические параметры по спектрам мощности объектов предоставят конкурентноспособные

Спасибо за внимание!

Доп слайды

Крупномасштабная структура вселенной

Опорная космология (плоская LCDM):

 $\Omega_{\rm cdm}=0.25$ - плотность темной материи

$$\Omega_{\mathrm{b}}=0.05$$
 - плотность барионов

h = 0.7 - постоянная Хаббла

 $n_s = 0.96$ - наклон спектра первичных возмущений

 $\sigma_8 = 0.8$ - полная мощность флуктуаций материи

Популяции АЯГ и скоплений: фактор скученности

23

Эффективный объем

$$V_{\text{eff}}(k) = \Omega \int_{z_{\min}}^{z_{\max}} \left(\frac{n(z)P_{\text{tr}}(k,z)}{n(z)P_{\text{tr}}(k,z) + 1} \right)^2 \frac{dV(z)}{dz} dz \text{ (Eisenstein+ 2005)}$$
$$\frac{\delta P}{P} \propto \sqrt{\frac{1}{V_{\text{eff}}}}$$

Kolodzig+2014b

Эффективный объем выборок в обзоре еРОЗИТА (половина неба) объем обзора $f_{sky} = 0.33$ Tracer AGN 0.5<z<2.5 Clusters 0.1<z<0.8 10 $V_{eff}[h^{-3}Gpc^{3}]$ photo-z σ_0 **—** 0.005 ---- 0.01 ---- 0.03 0.1 - 0.05 10^{-2} 0.1 $k[hMpc^{-1}]$

24

Эффективный объем

$$V_{\text{eff}}(k) = \Omega \int_{z_{\text{min}}}^{z_{\text{max}}} \left(\frac{n(z)P_{\text{tr}}(k,z)}{n(z)P_{\text{tr}}(k,z) + 1} \right)^2 \frac{dV(z)}{dz} dz$$

$$P(k, z)_{tr} = b^2(z)P(k, z)_{CDM} \times \frac{\sqrt{\pi}}{2\sigma k} erf(\sigma k)$$

спектр мощности АЯГ/Скоплений с учетом photo-z (Huetsi 2009)

$$\delta P/P = \sqrt{\frac{2}{V_{\text{eff}} V_k}}$$

Ошибка на мощность

Эффективный объем выборок в обзоре еРОЗИТА (половина неба)

Эффективный объем

$$\delta P/P \propto \sqrt{\frac{1}{V_{\text{eff}}}}$$

$$\delta P/P = \sqrt{\frac{2}{V_{\text{eff}} V_k}}$$

Ошибка на мощность

$$V_k = \frac{4\pi k^2 \Delta k}{(2\pi)^3}$$

Объем (независимые моды)

Номер обзора, площадь обзора

Приорная информация других экспериментов

Матрица Ковариации

