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Abstract
A new, robust timing-based formula for the magnetic field estimationB of isolated radiopulsars is suggested.

In contrast to the standard “magneto-dipolar” approach, weassume a weak dependence of pulsars spin-down lumi-
nosity on their magnetic obliquitiesL(α) ∝ B2(1 + sin2 α) as it has been derived from numerical simulations of
realistic non-vacuum NS magnetospheres. The state-of-the-art constraints on the isolated NS masses and obliquity
distributions are taken into account. The representative subset of more than 20 realistic equations of state is also
considered. We show that the surface magnetic field of an individual pulsar can be, in principle, constrained with
the relative uncertainty<∼ 30% at 1σ confidence.

Introduction

Magnetic fields of theisolated radiopulsars can be routinely inferred from their timing within a given
spin-down law. The classical equation for the latter (written for a spherical neutron star with moment
of inertiaI and radiusR) is

P ·
dP

dt
=

4π2R6

Ic3
· B2 · f (α) (1)

HereB is the field strength at themagnetic equator, α is the angle between the pulsar magnetic and
spin axes, whilec is the speed of light. This law explicitly definesB as a function of periodP , its
derivativeṖ and the dimensionless functionf (α). Many propositions aboutf (α) structure have been
made so far. But the most frequently used one – so-called the “magneto-dipolar” model – presumes
f (α) = 2 sin2α/3. Adopting furtherα = 90◦, I = I0 = 1045 g cm2 andR = R0 = 10 km, it provides
a classical formula for the estimation of pulsars magnetic fields:

Bmd(P, Ṗ ) =

√

3I0c
3

8π2R6
0

· PṖ = 3.2× 1019
√

PṖ Gs (2)

Even if one disregards the fact that equation (2) is based on the unrealistic assumptions (namely, the
vacuum NS magnetosphere and common values ofI andR for all the pulsars), the obliquityα = 90◦

assumed inBmd formally makes this estimation only a lower limit of the NS surface field strength.
On the other hand, the direct three-dimensional MHD and particle-in-cell numerical simulations of

the oblique pulsars magnetospheres undertaken in recent years [4, 2] have shown that realisticf (α)
can be approximated by a simple analytic formula

f (α) = k0 + k1 sin
2α, (3)

wherek0 ≈ 1, k1 ≈ 1.4 and both of them are constant within the terms proportional to (R/Pc)2. In
contrast to the “magneto-dipolar” model, this improved solution for f (α) provides a way to measure
the surface magnetic field of observed isolated pulsars withrelatively high precision even whenα
remains unknown at all.

Objectives

• Derive the correction to the classical estimatorBmd(P, Ṗ ) on the basis of the state-of-the-art un-
derstanding of the spin-down physics of isolated neutron stars.

• Take into account the existing observational constraints on the isolated neutron star massesM and
obliquity α distributions.

• Consider a representative and large enough subset of realistic equations of state (EOS) that do not
contradict to the observations in hand.

• Estimate the realistic uncertainties that can be achieved in the timing-based measurements of indi-
vidual pulsars magnetic fields.

Magnetic field calculus

ExtractingB from (1) and adopting (3) withk1 = 1 andk2 = 1.4 for f (α) one gets the value

B(M,α, P, Ṗ ) =

√

c3

4π2
×

√

I(M )

R3(M )
×

√

PṖ

1 + 1.4 sin2α
(4)

dependent on the instantaneousα, EOS (i.e. the inertia and the size of the star) and full NS gravita-
tional massM . Hereafter we focus on the logarithmic correction to the classical formula (2)

∆B = ∆
(eos)
B (M,α) ≡ logB(M,α, P, Ṗ )− logBmd(P, Ṗ ), (5)

which describes: (i) the deviation of the actual values ofI andR from I0 andR0 respectively; (ii) the
effect ofα 6= 90◦. Moreover,∆B does not depend neither onP nor onṖ . But, it is remarkable that
while α runs the full interval from0 to 90 degrees, the correction∆B changes only within±0.1 dex.

Adopting the known distributions of isolated pulsars obliquities, masses (which can be constrained
from observations of non-recycled pulsars in binary systems) and one of the realistic EOSes, we are
able to calculate thedistribution of the correction∆B. In other words, the latter can be used as a
random variable

∆
(eos)
B ∼ p(∆B|eos) (6)

for given probability densitiesp(α) andp(M ). Moreover, we have found within a simple numerical
population synthesis that in fact values of∆B are weakly correlated tologBmd(P, Ṗ ). Therefore the

basic moments ofp(∆B|eos) – the average〈∆(eos)
B 〉 and standard deviationσ

[

∆
(eos)
B

]

– have quite
clear physical meaning. In particular,

logB(eos)(P, Ṗ ) = logBmd(P, Ṗ ) + 〈∆
(eos)
B 〉 (7)

provides anunbiased estimation of the pulsar magnetic field with the typical uncertainty of order

σ[∆
(eos)
B ] for a given EOS. The equation (7) is the basic theoretical result of our research.

However, the equation of state of a neutron star matter remains formally unknown. But a large
number of reasonable theoretical propositions about it have been made so far. Adopting a number
of them, one may construct a timing-based magnetic field estimator which is even more generalized
than (7). Indeed, let{eosi} be a large enough subset ofN representative EOS that do not contradict
the experimental data. Let alsowi be the weight of theith EOS (i = 1..N ) in the list estimating its
chances to be realized in nature, so that

∑

wi = 1. Then a new random quantity∆∗
B can be introduced

through the mixture probability density

p(∆∗
B) =

∑

i

wi × p(∆B|eosi) (8)

Its average〈∆∗
B〉 and standard deviationσ

[

∆∗
B

]

have the same meanings as the moments of
p(∆B|eosi). Namely, the quantitylogB∗(P, Ṗ ) = logBmd(P, Ṗ ) + 〈∆∗

B〉 also provides an unbiased
estimation of the surface magnetic field of a radiopulsar with uncertainty of orderσ

[

∆∗
B

]

when no
EOS can be absolutely preferred from the list ofN possibilities.

Results
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Figure 1: (a) Adopted pulsars masses distribution (top panel), R(M) and I(M) relationships for 22 equations of state
(middle panels) and logarithmic correction (5) versus pulsar mass assumingα = 90◦; (b) Observed pulsars obliquities
distribution based on the data from [3] (grey bars) and its analytical approximation by ZJM03 (solid line) as well as the
isotropic obliquities model (dashed line);(c)∆(eos)

B distributions for 22 equations of state (grey lines) withinZJM03 obliq-
uities and generalized∆∗

B distributions for ZJM03 (solid thick line) and isotropic (dashed thick line) obliquities;(d) The
moments ofp(∆B|eos) distributions for 22 equations of state assuming ZJM03 (filled circles) or isotropic (open circles)
obliquities.

We have calculated numerically the probability distributions of∆(eos)
B and their basic moments – the

average and the standard deviation – for the representativelist of 22 equations of state which param-
eters are illustrated in the Figure 1a. The distributions ofisolated pulsars massesM and obliquitiesα
have been taken from the models derived in [1] (OF16 hereafter, see the top panel of Fig. 1a) and [5]
(ZJM03 hereafter, Fig. 1b) respectively. The results of thecalculations are shown in the plots 1(c,d).
The shapes ofp(∆B|eos) were found to be close to the Gaussian independently on EOS adopted with
averages from≈ −0.51 (for EOS MS1) to≈ −0.23 (for EOS WFF2). At the same time, their widths
appear to be nearly the same for all EOSes

σ
[

∆
(eos)
B

]

≈ 0.07± 0.01. (9)

It also has been found that in the case of the isotropic obliquities, p(∆B|eos) generally keep their
shapes and widths.

Finally, the distributions of the generalized correction (8), assuming equal weights (wi = 1/22) for
all EOS from our list, were also calculated. Their parameters are as follows:

logB∗ − logBmd ≈ −0.37± 0.10 and logB∗ − logBmd ≈ −0.43± 0.10 (10)

for the ZJM03 and isotropicp(α) respectively. This result means that the timing-based estimation of
a pulsar magnetic field can be as precise as∼ 0.1 dex even if neither the equation of state nor the mass
nor the obliquity is known. It is an intrinsic property of theadopted pulsars spin-down luminosity
model. Being rewritten in a linear form, the quantity

B∗ ≈
3

7
Bmd (11)

provides an unbiased estimation of the actual surface magnetic field strength of an isolated radiopulsar
with only∼20-25% uncertainty at 68% confidence level.

Conclusions

• The refined version of the canonical timing-based estimatorof the surface magnetic field of normal

radiopulsarsBmd(P, Ṗ ) was introduced in a formlogB = logBmd + ∆
(eos)
B (M,α). WhereM is

the NS mass, whileα is the magnetic obliquity.

• It was found that within existing observational constraints on massesM and obliquitiesα of iso-
lated radiopulsars, the value of∆B is distributed almost normally with the standard deviationas

small as≈ 0.06..0.09 dex for most of realistic EOSes. The average value of∆
(eos)
B is, however,

nonzero and covers the range from≈ −0.55 to≈ −0.25 depending on the choice of EOS.

• The generalized timing-based estimatorlogB∗ = logBmd − 0.37 ± 0.10 is also introduced under
the assumption of equal chances for all 22 considered equations of state to be realized in nature. It
indicates that within the realistic spin-down law the magnetic field of an arbitrary radiopulsar can
be estimated with<∼ 30% relative error using the timing parameters only.

References
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