

CII*/CII в среде с низкой металличностью <u>MNRAS Letters, 509, 26, 2022</u> <u>arXiv:2110.13591</u>

С.А. Балашев¹, К.Н. Теликова¹, Р. Noterdaeme²

¹ ФТИ им. А.Ф. Иоффе, Санкт-Петербург ² Institute d'Astrophysique de Paris

При поддержке РНФ 18-12-00301

Введение: С II

- Углерод один из самых распространённых элементов
- С II может быть как в ионизованной, так и в нейтральной (тёплой и холодной) межзвёздной среде
- Тонкое расщепление основного
 электронного уровня ⇒ Излучение
 в линии [С II] 158µm один из главных
 механизмов охлаждения диффузной
 нейтральное среды
- Линии С II 1334Å, С II* 1335Å
 "удобны" для изучения DLA систем в спектрах квазаров, так как часто попадают вне Лайман-альфа леса.

Введение: [С II] 158µm

- Линия [С II] 158µm одна из наиболее ярких линий излучения для звёздообразующих галактик (в суб-мм диапазоне)
- Наблюдается как в нашей Галактике, так и в галактиках на больших красных смещениях *z* > 4 (например, ALPHINE-ALMA CII)
- Линия [С II] 158µm из различных фаз: ионизованной, нейтральной, фотодиссоционных областей. Поэтому трактовка эмиссионных наблюдений неоднозначная...

Введение: С II в абсорбции

- В DLA системах линии С II 1334Å и С II* 1335Å лежат как правило в "чистой" области (без Lya леса) и хорошо отделяются друг от друга
- Линия С II 1334Å в DLA системах почти всегда насыщена лучевую концентрацию N(С II) практически всегда не определить.
- Линия **С II* 1335Å** обычно относительно слабая, что **С II*** даже не всегда идентифицируется в DLA системах.

Введение: С II в абсорбции. Wolfe+2008

Wolfe et al. 2003-2008 предложили использовать $N(C II^*)$ в DLA для оценок

 l_{CII} — темпа охлаждения среды в линии [С II]158 μ m

$$l_{\text{CII}} \equiv \frac{N(\text{C II}^*)A_{21}h\nu_{21}}{N(\text{H I})} \quad (\text{Pottasch+1979})$$

Введение: С II в абсорбции. Wolfe+2008

Wolfe et al. 2003-2008 продвигали идею, что бимодальность l_{C} является следствием бимодальности в темпах звездообразования в DLA

$$l_{\text{CII}} = \Lambda_{\text{tot}} = \Gamma_{\text{tot}} = \Gamma_{pe}(UV, Z) \quad \propto \quad UV, Z \quad \Longrightarrow \quad UV \quad \Rightarrow \quad \Sigma_{\text{SFR}}$$

Введение: С II в абсорбции. Wolfe+2008

Wolfe et al. 2003-2008 продвигали идею, что бимодальность $l_{\mathcal{C}}$ является следствием бимодальности в темпах звездообразования в DLA

$$l_{\text{CII}} = \Lambda_{\text{tot}} = \Gamma_{\text{tot}} = \Gamma_{pe}(UV, Z) \quad \propto \quad UV, Z \quad \Longrightarrow \quad UV \quad \Rightarrow \quad \Sigma_{\text{SFR}}$$

При этом бимодальность l_{CII} также проявлялась и в других свойствах $(Z, \Delta v_{90}, W_{SIII})$ наблюдаемой выборки DLA систем:

Введение: Wolfe+2008. Критика

1. Наблюдения DLA указывали, что типичные Σ_{SFR} значительно меньше, чем измерения по C II для high-cool DLA (Fumagalli+2014).

2. DLA системы в основном трассируют теплую фазу нейтрального газа

$$l_{\text{CII}} \neq \Lambda_{\text{tot}} \approx \Lambda_{\text{Lya}} = \Gamma_{\text{tot}} = \Gamma_{\text{pe}}$$

 $l_{\text{CII}} = \Lambda_{\text{tot}}$ (только для холодной фазы нейтральной среды) ₈

Введение: Wolfe+2008. Критика

3. DLA системы имеют низкую металличность ($Z \leq 0.1$)

 \Rightarrow пыли мало (DTG $\propto Z$)

 \Rightarrow нагрев фотоэлектронами мал ($\Gamma_{pe} \propto DTG \propto Z$)

Бимодальность темпов охлаждения

Как тогда можно объяснить бимодальность l_{CII} (и других свойств) в DLA?

Бимодальность темпов охлаждения

Как тогда можно объяснить бимодальность l_{CII} (и других свойств) в DLA?

$$\mathcal{L}_{\text{CII}} \propto \frac{N(\text{C II}^*)}{N(\text{H I})} = \frac{N(\text{C II}^*)}{N(\text{H I})} \times \frac{Z}{Z} \propto$$

 $\propto \frac{N(\text{C II}^*)}{N(\text{C II})} \times Z \equiv R_{\text{C}} \times Z$

Тогда что объяснить бимодальность l_{CII} :

- 1. Бимодальность R_{C}
- 2. Зависимость $R_{\rm C} \propto Z^{-1}$

Как тогда можно объяснить бимодальность l_{CII} (и других свойств) в DLA?

 $l_{\rm CII} \propto R_{\rm C} \times Z$

Отношение $C II^*/C II$

Для широкого диапазона физических условий населённость уровня С II^{*} определяется балансом между столкновительным заселением (H I, H₂, e⁻) и спонтанным переходом:

E, cm⁻¹

$$R_C = \frac{N(\text{C II}^*)}{N(\text{C II})} \approx \frac{n(\text{C II}^*)}{n(\text{C II})} \approx \frac{C_{12}(T)n}{A_{21}}$$

для Н I и H₂:
$$C_{12}(T) \propto T^{0.35}$$

+ $P_{th} = n T$ \Rightarrow $R_{\rm C} \propto T^{-0.65} P_{th}$

Тогда наличие холодной ($T_{\rm CNM} \approx 100$ K) и тёплой ($T_{\rm WNM} \approx 8000$ K) фазы:

$$\Rightarrow$$
 бимодальность $R_{\rm C}$: $R_{\rm C}^{\rm CNM} \approx 20 \times R_{\rm C}^{\rm WNM}$

(см., например, Liszt 2002, Wolfe+2003, Srianand+2005) 13

Фазовая диаграмма нейтральной среды

$$\Rightarrow \Gamma_{\text{tot}} = \Gamma_{\text{pe}}(Z) + \Gamma_{\text{cr}} + \Gamma_{\text{turb}} + \Gamma_{X} + \dots$$
$$\parallel \\ \Lambda_{\text{tot}} = l_{\text{CII}}(Z) + l_{\text{OI}}(Z) + \Lambda_{\text{Ly}\alpha} + \dots$$

Зависимость составляющих от металличности \implies фазовая диаграмма нейтральной среды зависит от металличности (Srianand+2003, Bialy+2019, ...)

Зависимость $R_{\rm C} \propto Z^{-1}$

Так как характерное тепловое давление растёт с падением металличности:

$$R_C \propto T^{-0.65} P_{th} \propto T^{-0.65} Z^{-1} \quad (Z \ll 1)$$

Тогда для
$$\begin{cases} \chi = 1 \text{ [Draine field]} \\ \zeta = 10^{-16} \text{ [s}^{-1} \text{]} \\ \Gamma_{\text{turb}} = 10^{-27} n \text{ [erg s}^{-1} \text{]} \\ \text{DTG} \propto Z^{-2} \end{cases}$$
 и давления $P = \frac{P_{\min} + P_{\max}}{2}$

получаем

Тогда для $\begin{cases} \chi = 1 \text{ [Draine field]} \\ \zeta = 10^{-16} \text{ [s}^{-1}\text{]} \\ \Gamma_{\text{turb}} = 10^{-27} n \text{ [erg s}^{-1}\text{]} \\ \text{DTG} \propto Z^{-2} \end{cases}$

Добавляя 0.3 dex дисперсию по каждому из параметров и $P \sim U[P_{\min}, P_{\max}]$:

Уровень С II^{*} может также эффективно населятся за счёт столкновений с e^- :

$$f_{\rm HII} > 10^{-2} \implies R_{\rm C} = \frac{C_{12}^{e}(T_{e})n_{e}}{A_{21}}$$

Тогда предполагая $f_{HII} = 1$, $T_e = 10^4$ K, $P_{IM} = P_{th}$ (и то же сэмплирование):

Что с бимодальностью по другими свойствами (Z, Δv_{90})?

- 1. Почему H_2 найден только в части CNM DLA?
- 2. Почему число DLA систем, ассоциированных с CNM по C II растёт с ростом $(Z, \Delta v_{90})$?

Что с бимодальностью по другими свойствами (Z, Δv_{90})?

1. $\Delta v_{90} \propto Z$ (Ledoux+2006)

2.
$$\begin{cases} R_{C} = f_{CNM} R_{C}^{CNM} + (1 - f_{CNM}) R_{C}^{WNM} \\ Pr(CNM) \propto Z (\Delta v_{90}) & \text{(по H}_{2} - \text{см., например,} \\ Noterdaeme + 2008) \end{cases}$$
$$\frac{Pr(R_{C} \approx R_{C}^{CNM}, Z)}{Pr(R_{C} \approx R_{C}^{WNM}, Z)} \gg \frac{Pr(CNM)}{Pr(WNM)} > 0.05 \text{ (по H}_{2} - \text{Balashev} + 2018) \end{cases}$$

3. Функция селекции для выборки С II в DLA не известна

Заключение

- 1. Мы показали, что наблюдаемая бимодальность в темпах охлаждения С II в DLA системах на больших красных смещения является следствием
 - і. Разделения нейтральной среды на тёплую и холодную фазу
 - іі. Зависимости фазовой диаграммы нейтральной среды от металличности
- 2. Наблюдаемая зависимость $R_{\rm C}(Z)$ воспроизводиться для характ. параметров среды (UV = 1, $\zeta_{\rm CR} = 10^{-16}$ s⁻¹, $\Gamma_{\rm turb}n = 10^{-27}$ erg s⁻¹, $DTG \propto Z^{-2}$)
- 3. Отношение С II*/С II (или l_{CII}) может быть использовано для оценок ζ_{CR} скорости ионизации космическими лучами, а не UV (и сл-но Σ_{SFR})

Однако
$$\sqrt{\zeta_{CR}} \propto UV \propto \Sigma_{SFR}$$
 (Kosenko, SB+2021)

- 4. Холодная фаза в DLA трассируется не только H_2
- 5. Отношение С II*/С II в тёплой фазе даёт хорошую оценку на $n \Rightarrow P_{th}$