

Измерение космического рентгеновского фона в диапазоне 3-20 кэВ по данным орбитального телескопа НуСТАР

arXiv:2011.11469

Р. Кривонос

ИКИ РАН

The Deepest X-ray Surveys to Date

The CDF-S and Extended CDF-S

The Chandra Deep Field-North (CDF-N)

SRG/eROSITA 0.3-2.3 keV - RGB Map

Разрешенная доля КРФ падает с энергией, т.е. активные ядра галактик, которые дают основной вклад в излучение в пике энерговыделения на ~30 кэВ **никогда не были наблюдены индивидуально**

Сложности измерения КРФ

Ревнивцев и др., 2003

Исследование космического фона в ИКИ РАН

A&A 411, 329–334 (2003) DOI: 10.1051/0004-6361:20031386 © ESO 2003 Astronomy Astrophysics

The spectrum of the cosmic X-ray background observed by RTXE/PCA

M. Revnivtsev^{1,2}, M. Gilfanov^{1,2}, R. Sunyaev^{1,2}, K. Jahoda³, and C. Markwardt³

Max-Planck-Institute für Astrophysik, Karl-Schwarzschild-Str. 1, 85740 Garching bei München, Germany
 Space Research Institute, Russian Academy of Sciences, Profsoyuznaya 84/32, 117810 Moscow, Russia
 Laboratory for High Energy Astrophysics, Code 662, Goddard Space Flight Center, Greenbelt, MD 20771, USA

Fig. 4. Spectrum of CXB obtained by different instruments.

Исследование космического фона в ИКИ РАН

A&A 467, 529–540 (2007) DOI: 10.1051/0004-6361:20066230 © ESO 2007 Astronomy Astrophysics

INTEGRAL observations of the cosmic X-ray background in the 5–100 keV range via occultation by the Earth

E. Churazov^{1,2}, R. Sunyaev^{1,2}, M. Revnivtsev^{1,2}, S. Sazonov^{1,2}, S. Molkov^{1,2}, S. Grebenev¹, C. Winkler³, A. Parmar³,
 A. Bazzano⁴, M. Falanga⁵, A. Gros⁵, F. Lebrun^{5,6}, L. Natalucci⁴, P. Ubertini⁴, J.-P. Roques⁷, L. Bouchet⁷, E. Jourdain⁷,
 J. Knödlseder⁷, R. Diehl⁸, C. Budtz-Jorgensen⁹, S. Brandt⁹, N. Lund⁹, N. J. Westergaard⁹, A. Neronov¹⁰, M. Türler¹⁰,
 M. Chernyakova¹⁰, R. Walter¹⁰, N. Produit¹⁰, N. Mowlavi¹⁰, J. M. Mas-Hesse¹¹, A. Domingo¹², N. Gehrels¹³,
 E. Kuulkers¹⁴, P. Kretschmar¹⁴, and M. Schmidt¹⁵

Измерение сигнала от КРФ

Спектральное моделирование детектора

Временная модуляция

Пространственная модуляция

2013-07-01 22:28

Временная модуляция сигнала КРФ

INTEGRAL OBSERVES THE EARTH OCCULTING GX 301-2 AND THE CXB

References:

- [1] INTEGRAL observations of the cosmic X-ray background in the 5-100 keV range via occultation by the Earth, Churazov E., Sunyaev R., Revnivtsev M., et al. A&A 467, 529, 2007
- [2] INTEGRAL hard X-ray spectra of the cosmic X-ray background and Galactic ridge emission, Türler M., Chernyakova M., Courvoisier T. J.-L., et al. A&A 512, A49, 2010
- [3] Analysis of the new INTEGRAL Earth observations to measure the cosmic X-ray background, Türler M., Produit N., Pavan L., et al. PoS (INTEGRAL 2012) 067, 2013 arXiv:1302.6493

IXPE: проблема боковой засветки устранена боковыми заслонками

Примеры боковой засветки от яркого точечного источника

DET1Y

Геометрическая модель телескопа НуСТАР

Суммарное изображение в детекторных координатах, 3-20 кэВ, 2.4 Мсек

Модель боковой засветки -- определяет телесный угол для каждого элемента детектора

Field	R.A.	DEC.	Area (sq. deg)	Raw exposure	Ref.
COSMOS EGS ECDFS UDS	$150.2 \\ 214.8 \\ 53.1 \\ 34.4$	2.2 52.8 -27.8 -5.1	$1.7 \\ 0.18 \\ 0.25 \\ 0.4$	3.1 Ms 1.6 Ms 1.5 Ms 1.7 Ms	Civano et al. (2015) Aird et al., in prep Mullaney et al. (2015) Masini et al. (2018)

Результаты измерения КРФ

ID	Field	Begin	End	T _{exp}
1	COSMOS EP1	26-12-2012	20-01-2013	$750 \mathrm{\ ks}$
2	COSMOS EP2	03-04-2013	21-05-2013	630 ks
3	COSMOS EP3	03-12-2013	25-02-2014	$1020 \ \mathrm{ks}$
4	EGS	15 - 11 - 2013	27 - 11 - 2014	$1.5 { m Ms}$
5	ECDFS	28-09-2012	01-04-2013	$1.4 { m Ms}$
6	UDS	24-01-2016	18-11-2016	$1.7 { m Ms}$

Анизотропия КРФ

Вариации космического рентгеновского фона

0.5 1 1.5 2

krivonos 26-Mar-2021 11:43

Результаты и будущие планы

- Получен спектр КРФ с рекордной чувствительностью <1% в диапазоне 3-20 кэВ
- Систематическая неопределенность сравнима с ожидаемой дисперсией КРФ
- Спектр высокого разрешения позволяет ставить строгие ограничения на эмиссионные линии распада частиц Темной Материи (стерильного нейтрино)
- Архив наблюдательных данных телескопа HyCTAP содержит уже более 100 (х2) Мс данных, доступных для анализа, что открывает новые возможности для измерения КРФ по всему небу, включая поиск анизотропии.
- Рентгеновский фон Галактики (aka GRXE, Ridge, «хребет Галактики»)

Публикации: <u>arXiv:1609.00667</u>, <u>arXiv:1901.01262</u>, <u>arXiv:1909.0</u> 5916, <u>arXiv:1908.09037</u>, <u>arXiv:2102.01236</u>, <u>arXiv:2011.11469</u>